Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
86 result(s) for "Domcke, Valerie"
Sort by:
Chiral anomaly, Schwinger effect, Euler-Heisenberg Lagrangian and application to axion inflation
A bstract Particle production in strong electromagnetic fields is a recurring theme in solid state physics, heavy ion collisions, early universe cosmology and formal quantum field theory. In this paper we discuss the Dirac equation in a background of parallel electric and magnetic fields. We review the Schwinger particle production rate, clarify the emergence of the chiral anomaly equation and compute the induced current of charged fermions. We distinguish the contributions from non-perturbative particle production, from the running of the gauge coupling constant and from non-linearities in the effective QED Lagrangian, and clarify how these contributions arise within a single framework. We apply these results to axion inflation. A Chern-Simons coupling between the pseudoscalar particle driving cosmic inflaton and an abelian gauge group induces a dual production of gauge fields and charged fermions. We show that the resulting scalar and gravitational wave power spectra strongly depend on the fermion mass.
Spontaneous baryogenesis from axions with generic couplings
A bstract Axion-like particles can source the baryon asymmetry of our Universe through spontaneous baryogenesis. Here we clarify that this is a generic outcome for essentially any coupling of an axion-like particle to the Standard Model, requiring only a non-zero velocity of the classical axion field while baryon or lepton number violating interactions are present in thermal bath. In particular, coupling the axions only to gluons is sufficient to generate a baryon asymmetry in the presence of electroweak sphalerons or the Weinberg operator. Deriving the transport equation for an arbitrary set of couplings of the axion-like particle, we provide a general framework in which these results can be obtained immediately. If all the operators involved are efficient, it suffices to solve an algebraic equation to obtain the final asymmetries. Otherwise one needs to solve a simple set of differential equations. This formalism clarifies some theoretical subtleties such as redundancies in the axion coupling to the Standard Model particles associated with a field rotation. We demonstrate how our formalism automatically evades potential pitfalls in the calculation of the final baryon asymmetry.
Axion assisted Schwinger effect
A bstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect . While the standard Schwinger production rate is proportional to exp − π m 2 + p T 2 / E , with m and p T denoting the fermion mass and its momentum transverse to the electric field E , the axion assisted Schwinger effect can be enhanced at large momenta to exp( −πm 2 /E ). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.
MeV-scale seesaw and leptogenesis
A bstract We study the type-I seesaw model with three right-handed neutrinos and Majorana masses below the pion mass. In this mass range, the model parameter space is not only strongly constrained by the requirement to explain the light neutrino masses, but also by experimental searches and cosmological considerations. In the existing literature, three disjoint regions of potentially viable parameter space have been identified. In one of them, all heavy neutrinos decay shortly before big bang nucleosynthesis. In the other two regions, one of the heavy neutrinos either decays between BBN and the CMB decoupling or is quasi-stable. We show that previously unaccounted constraints from photodisintegration of nuclei practically rule out all relevant decays that happen between BBN and the CMB decoupling. Quite remarkably, if all heavy neutrinos decay before BBN, the baryon asymmetry of the universe can be quite generically explained by low-scale leptogenesis, i.e. without further tuning in addition to what is needed to avoid experimental and cosmological constraints. This motivates searches for heavy neutrinos in pion decay experiments.
Wash-in leptogenesis after axion inflation
A bstract CP violation and the violation of baryon-minus-lepton number B−L do not necessarily have to occur simultaneously in order to accomplish successful leptogenesis. Instead, it suffices if new CP -violating interactions at high energies result in primordial charge asymmetries, which are then reprocessed into a nonvanishing B−L asymmetry by right-handed neutrinos (RHNs) at lower energies. In this paper, we study this novel mechanism known as wash-in leptogenesis , utilizing axion inflation as the source of high-scale CP violation. We specifically consider axion inflation coupled to the Standard Model hypercharge sector, which results in the dual production of hypermagnetic helicity and fermionic charge asymmetries. Although the survival of these charges is endangered by sphaleron processes, magnetic diffusion, and the chiral plasma instability, we find a large range of viable scenarios. We consistently account for RHN flavor effects and coherence among the Standard Model lepton flavors across a wide range of RHN masses. We find a lower bound of 10 5···9 GeV on the mass of the lightest RHN involved in wash-in leptogenesis, depending on the onset of turbulence in the chiral plasma and the Hubble scale of inflation. Our model is representative of a broader class of new leptogenesis scenarios and suggests interesting observational signatures with regard to intergalactic magnetic fields, primordial black holes, and gravitational waves.
Cosmological relaxation through the dark axion portal
A bstract The dark axion portal is a coupling of an axion-like particle to a dark photon kinetically mixed with the visible photon. We show how this portal, when applied to the relaxion, can lead to cosmological relaxation of the weak scale using dark photon production. The key backreaction mechanism involves the Schwinger effect: as long as electroweak symmetry is unbroken, Schwinger production of massless Standard Model fermions, which carry dark millicharges, suppresses the dark photon production. Once the electroweak symmetry is broken, the fermions acquire mass and the suppression is lifted. An enhanced dark photon dissipation then traps the relaxion at a naturally small weak scale. Our model thus provides a novel link between the phenomenological dark axion portal, dark photons, and the hierarchy problem of the Higgs mass.
Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches
A bstract In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.
Charge transfer between rotating complex scalar fields
A bstract We consider the transfer of a U(1) charge density between Bose-Einstein condensates of complex scalar fields coupled to a thermal bath, focusing on the case of a homogeneous Affleck-Dine field transmitting the charge stored in its angular motion to an axion field. We demonstrate that in the absence of additional symmetries this charge transfer, aided by cosmic expansion as well as the thermal effective potential of the Affleck-Dine field, can be very efficient. The charge redistribution between the scalar fields becomes possible if the interactions with the thermal bath break the original U(1) × U(1) symmetry down to a single U(1) symmetry; the charge distribution between the two fields is then determined by minimizing the free energy. We discuss implications for cosmological setups involving complex scalars, with applications to axion dark matter, baryogenesis, kination domination, and gravitational wave production.
Low-scale leptogenesis with three heavy neutrinos
A bstract Leptogenesis induced by the oscillations of GeV-scale neutrinos provides a minimal and testable explanation of the baryon asymmetry of the Universe. In this work we extend previous studies invoking only two heavy neutrinos to the case of three heavy neutrinos. We find qualitatively new behaviour as a result of lepton number violating oscillations and decays, strong flavour effects in the washout and a resonant enhancement due to matter effects. An approximate global B − L ¯ symmetry (representing the difference of baryon and a generalised lepton number) can protect the light neutrino masses from large radiative corrections, while simultaneously providing the ingredients for the resonant enhancement of the lepton asymmetry due to thermal contributions to the heavy neutrino dispersion relations. This mechanism is particularly efficient for large heavy neutrino mixing angles near the current experimental limits, a regime in which leptogenesis is not feasible in the minimal scenario with two heavy neutrinos. In this new parameter regime, low-scale leptogenesis is testable by the LHC and other existing experiments.
Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies
The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts that have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop “Challenges and opportunities of high-frequency gravitational wave detection” held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.