Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
89 result(s) for "Dominique Valeyre"
Sort by:
Sarcoidosis
Sarcoidosis is a systemic disease of unknown cause that is characterised by the formation of immune granulomas in various organs, mainly the lungs and the lymphatic system. Studies show that sarcoidosis might be the result of an exaggerated granulomatous reaction after exposure to unidentified antigens in individuals who are genetically susceptible. Several new insights have been made, particularly with regards to the diagnosis and care of some important manifestations of sarcoidosis. The indications for endobronchial ultrasound in diagnosis and for PET in the assessment of inflammatory activity are now better specified. Recognition of unexplained persistent disabling symptoms, fatigue, small-fibre neurological impairment, cognitive failure, and changes to health state and quality of life, has improved. Mortality in patients with sarcoidosis is higher than that of the general population, mainly due to pulmonary fibrosis. Predicted advances for the future are finding the cause of sarcoidosis, and the elucidation of relevant biomarkers, reliable endpoints, and new efficient treatments, particularly in patients with refractory sarcoidosis, lung fibrosis, and those with persistent disabling symptoms.
Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers
New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.
Sarcoidosis: A Clinical Overview from Symptoms to Diagnosis
Sarcoidosis is a multi-system disease of unknown etiology characterized by the formation of granulomas in various organs. It affects people of all ethnic backgrounds and occurs at any time of life but is more frequent in African Americans and Scandinavians and in adults between 30 and 50 years of age. Sarcoidosis can affect any organ with a frequency varying according to ethnicity, sex and age. Intrathoracic involvement occurs in 90% of patients with symmetrical bilateral hilar adenopathy and/or diffuse lung micronodules, mainly along the lymphatic structures which are the most affected system. Among extrapulmonary manifestations, skin lesions, uveitis, liver or splenic involvement, peripheral and abdominal lymphadenopathy and peripheral arthritis are the most frequent with a prevalence of 25–50%. Finally, cardiac and neurological manifestations which can be the initial manifestation of sarcoidosis, as can be bilateral parotitis, nasosinusal or laryngeal signs, hypercalcemia and renal dysfunction, affect less than 10% of patients. The diagnosis is not standardized but is based on three major criteria: a compatible clinical and/or radiological presentation, the histological evidence of non-necrotizing granulomatous inflammation in one or more tissues and the exclusion of alternative causes of granulomatous disease. Certain clinical features are considered to be highly specific of the disease (e.g., Löfgren’s syndrome, lupus pernio, Heerfordt’s syndrome) and do not require histological confirmation. New diagnostic guidelines were recently published. Specific clinical criteria have been developed for the diagnosis of cardiac, neurological and ocular sarcoidosis. This article focuses on the clinical presentation and the common differentials that need to be considered when appropriate.
Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis
IntroductionIdiopathic pulmonary fibrosis (IPF) has an unpredictable course corresponding to various profiles: stability, physiological disease progression and rapid decline. A minority of patients experience acute exacerbations (AEs). A recent study suggested that ozone and nitrogen dioxide might contribute to the occurrence of AE. We hypothesised that outdoor air pollution might influence the natural history of IPF.MethodsPatients were selected from the French cohort COhorte FIbrose (COFI), a national multicentre longitudinal prospective cohort of IPF (n=192). Air pollutant levels were assigned to each patient from the air quality monitoring station closest to the patient’s geocoded residence. Cox proportional hazards model was used to evaluate the impact of air pollution on AE, disease progression and death.ResultsOnset of AEs was significantly associated with an increased mean level of ozone in the six preceding weeks, with an HR of 1.47 (95% CI 1.13 to 1.92) per 10 µg/m3 (p=0.005). Cumulative levels of exposure to particulate matter PM10 and PM2.5 were above WHO recommendations in 34% and 100% of patients, respectively. Mortality was significantly associated with increased levels of exposure to PM10 (HR=2.01, 95% CI 1.07 to 3.77) per 10 µg/m3 (p=0.03), and PM2.5 (HR=7.93, 95% CI 2.93 to 21.33) per 10 µg/m3 (p<0.001).ConclusionThis study suggests that air pollution has a negative impact on IPF outcomes, corroborating the role of ozone on AEs and establishing, for the first time, the potential role of long-term exposure to PM10 and PM2.5 on overall mortality.
Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts
Sarcoidosis is a complex disease that belongs to the vast group of autoinflammatory disorders, but the etiological mechanisms of which are not known. At the crosstalk of environmental, infectious, and genetic factors, sarcoidosis is a multifactorial disease that requires a multidisciplinary approach for which genetic research, in particular, next generation sequencing (NGS) tools, has made it possible to identify new pathways and propose mechanistic hypotheses. Codified treatments for the disease cannot always respond to the most progressive forms and the identification of new genetic and metabolic tracks is a challenge for the future management of the most severe patients. Here, we review the current knowledge regarding the genes identified by both genome wide association studies (GWAS) and whole exome sequencing (WES), as well the connection of these pathways with the current research on sarcoidosis immune-related disorders.
Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials
Idiopathic pulmonary fibrosis is a progressive and fatal lung disease with inevitable loss of lung function. The CAPACITY programme (studies 004 and 006) was designed to confirm the results of a phase 2 study that suggested that pirfenidone, a novel antifibrotic and anti-inflammatory drug, reduces deterioration in lung function in patients with idiopathic pulmonary fibrosis. In two concurrent trials (004 and 006), patients (aged 40–80 years) with idiopathic pulmonary fibrosis were randomly assigned to oral pirfenidone or placebo for a minimum of 72 weeks in 110 centres in Australia, Europe, and North America. In study 004, patients were assigned in a 2:1:2 ratio to pirfenidone 2403 mg/day, pirfenidone 1197 mg/day, or placebo; in study 006, patients were assigned in a 1:1 ratio to pirfenidone 2403 mg/day or placebo. The randomisation code (permuted block design) was computer generated and stratified by region. All study personnel were masked to treatment group assignment until after final database lock. Treatments were administered orally, 801 mg or 399 mg three times a day. The primary endpoint was change in percentage predicted forced vital capacity (FVC) at week 72. Analysis was by intention to treat. The studies are registered with ClinicalTrials.gov, numbers NCT00287729 and NCT00287716. In study 004, 174 of 435 patients were assigned to pirfenidone 2403 mg/day, 87 to pirfenidone 1197 mg/day, and 174 to placebo. In study 006, 171 of 344 patients were assigned to pirfenidone 2403 mg/day, and 173 to placebo. All patients in both studies were analysed. In study 004, pirfenidone reduced decline in FVC (p=0·001). Mean FVC change at week 72 was −8·0% (SD 16·5) in the pirfenidone 2403 mg/day group and −12·4% (18·5) in the placebo group (difference 4·4%, 95% CI 0·7 to 9·1); 35 (20%) of 174 versus 60 (35%) of 174 patients, respectively, had a decline of at least 10%. A significant treatment effect was noted at all timepoints from week 24 and in an analysis over all study timepoints (p=0·0007). Mean change in percentage FVC in the pirfenidone 1197 mg/day group was intermediate to that in the pirfenidone 2403 mg/day and placebo groups. In study 006, the difference between groups in FVC change at week 72 was not significant (p=0·501). Mean change in FVC at week 72 was −9·0% (SD 19·6) in the pirfenidone group and −9·6% (19·1) in the placebo group, and the difference between groups in predicted FVC change at week 72 was not significant (0·6%, −3·5 to 4·7); however, a consistent pirfenidone effect was apparent until week 48 (p=0·005) and in an analysis of all study timepoints (p=0·007). Patients in the pirfenidone 2403 mg/day group had higher incidences of nausea (125 [36%] of 345 vs 60 [17%] of 347), dyspepsia (66 [19%] vs 26 [7%]), vomiting (47 [14%] vs 15 [4%]), anorexia (37 [11%] vs 13 [4%]), photosensitivity (42 [12%] vs 6 [2%]), rash (111 [32%] vs 40 [12%]), and dizziness (63 [18%] vs 35 [10%]) than did those in the placebo group. Fewer overall deaths (19 [6%] vs 29 [8%]) and fewer deaths related to idiopathic pulmonary fibrosis (12 [3%] vs 25 [7%]) occurred in the pirfenidone 2403 mg/day groups than in the placebo groups. The data show pirfenidone has a favourable benefit risk profile and represents an appropriate treatment option for patients with idiopathic pulmonary fibrosis. InterMune.
BUILD-3: A Randomized, Controlled Trial of Bosentan in Idiopathic Pulmonary Fibrosis
A previous trial of bosentan in idiopathic pulmonary fibrosis (IPF) showed a trend to delayed IPF worsening or death. Also, improvements in some measures of dyspnea and health-related quality of life were observed. To demonstrate that bosentan delays IPF worsening or death. Prospective, randomized (2:1), double-blind, placebo-controlled, event-driven, parallel-group, morbidity-mortality trial of bosentan in adults with IPF of less than 3 years' duration, confirmed by surgical lung biopsy, and without extensive honeycombing on high-resolution computed tomography. The primary endpoint was time to IPF worsening (a confirmed decrease from baseline in FVC ≥ 10% and diffusing capacity of the lung for carbon monoxide ≥ 15%, or acute exacerbation of IPF) or death up to End of Study. Effects of bosentan on health-related quality of life, dyspnea, and the safety and tolerability of bosentan were investigated. Six hundred sixteen patients were randomized to bosentan (n=407) or placebo (=209). No significant difference between treatment groups was observed in the primary endpoint analysis (hazard ratio, 0.85; 95% confidence interval, 0.66-1.10; P=0.2110). No treatment effects were observed on health-related quality of life or dyspnea. Some effects of bosentan treatment were observed in changes from baseline to 1 year in FVC and diffusing capacity of the lung for carbon monoxide. The safety profile for bosentan was similar to that observed in other trials. The primary objective in the Bosentan Use in Interstitial Lung Disease-3 trial was not met. Bosentan was well tolerated. Clinical trial registered with www.clinicaltrials.gov (NCT 00391443).
Transbronchial Cryobiopsies for the Diagnosis of Diffuse Parenchymal Lung Diseases: Expert Statement from the Cryobiopsy Working Group on Safety and Utility and a Call for Standardization of the Procedure
Transbronchial cryobiopsies (TBCB) have recently been introduced as a promising and safer alternative to surgical lung biopsy in the diagnostic approach to diffuse parenchymal lung diseases (DPLD). Despite a substantial and expanding body of literature, the technique has not yet been standardized and its place in the diagnostic algorithm of DPLD remains to be defined. In part, this reflects concerns over the diagnostic yield and safety of the procedure, together with the rapid spread of the technique without competency and safety standards; furthermore, there is a substantial procedural variability among centers and interventional pulmonologists. We report this expert statement proposed during the third international conference on “Transbronchial Cryobiopsy in Diffuse Parenchymal Lung Disease” (Ravenna, October 27–28, 2016), which formulates evidence- and expert-based suggestions on the indications, contraindications, patient selection, and procedural aspects of the procedure. The following 5 domains were reviewed: (1) what is the role of TBCB in the diagnostic evaluation of DPLD: patient selection; (2) pathological considerations; (3) contraindications and safety considerations; (4) how should TBCB be performed and in what procedural environment; and (5) who should perform TBCB. Finally, the existence of white paper recommendations may also reassure local hospital credentialing committees tasked with endorsing an adoption of the technique.
Expression of SAA1, SAA2 and SAA4 genes in human primary monocytes and monocyte-derived macrophages
Circulating serum amyloid A (SAA) is increased in various inflammatory conditions. The human SAA protein family comprises the acute phase SAA1/SAA2, known to activate a large set of innate and adaptive immune cells, and the constitutive SAA4. The liver synthesis of SAA1/SAA2 is well-established but there is still an open debate on extrahepatic SAA expression especially in macrophages. We aimed to investigate the ability of human primary monocytes and monocyte-derived macrophages to express SAA1, SAA2 and SAA4 at both the transcriptional and protein levels, as previous studies almost exclusively dealt with monocytic cell lines. Monocytes and derived macrophages from healthy donors were stimulated under various conditions. In parallel with SAA, pro-inflammatory IL1A, IL1B and IL6 cytokine expression was assessed. While LPS alone was non-effective, a combined LPS/dexamethasone treatment induced SAA1 and to a lesser extent SAA2 transcription in human monocytes and macrophages. In contrast, as expected, pro-inflammatory cytokine expression was strongly induced following stimulation with LPS, an effect which was dampened in the presence of dexamethasone. Furthermore, in monocytes polarized towards a pro-inflammatory M1 phenotype, SAA expression in response to LPS/dexamethasone was potentiated; a result mainly seen for SAA1. However, a major discrepancy was observed between SAA mRNA and intracellular protein levels under the experimental conditions used. Our results demonstrate that human monocytes and macrophages can express SAA genes, mainly SAA1 in response to an inflammatory environment. While SAA is considered as a member of a large cytokine network, its expression in the monocytes-macrophages in response to LPS-dexamethasone is strikingly different from that observed for classic pro-inflammatory cytokines. As monocytes-macrophages are major players in chronic inflammatory diseases, it may be hypothesized that SAA production from macrophages may contribute to the local inflammatory microenvironment, especially when macrophages are compactly organized in granulomas as in sarcoidosis.
Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3ʰⁱᵍʰ regulatory T cells in humans
Significance CD4 ⁺ regulatory T (Treg) cells expressing CD25 and the transcription factor forkhead box P3 (FOXP3) play indispensable roles for immunological self-tolerance and homeostasis. Because human FOXP3 ⁺CD25 ⁺CD4 ⁺ T cells are heterogeneous in function and differentiation status, their analysis and manipulation for treating immunological diseases remains a challenge. Here we show that CD15s (sialyl Lewis x) is specifically expressed by activated, terminally differentiated, and most suppressive FOXP3 ʰⁱᵍʰ Treg cells, allowing their separation from nonsuppressive FOXP3 ⁺CD4 ⁺ T cells secreting inflammatory cytokines. Removal of CD15s ⁺CD4 ⁺ T cells from human blood is indeed sufficient to enhance in vitro antitumor and antiviral antigen responses. CD15s is therefore useful for phenotypic as well as functional analysis of human Treg subpopulations and for targeting them to control immune responses. CD4 ⁺ regulatory T (Treg) cells expressing CD25 and the transcription factor forkhead box P3 (FOXP3) are indispensable for immunological self-tolerance and homeostasis. FOXP3 ⁺CD25 ⁺CD4 ⁺ T cells in humans, however, are heterogeneous in function and differentiation status, including suppressive or nonsuppressive cells as well as resting or activated Treg cells. We have searched for cell surface markers specific for suppression-competent Treg cells by using a panel of currently available monoclonal antibodies reactive with human T cells. We found that CD15s (sialyl Lewis x) was highly specific for activated, terminally differentiated, and most suppressive FOXP3 ʰⁱᵍʰ effector Treg (eTreg) cells and able to differentiate them in various clinical settings from nonsuppressive FOXP3 ⁺ T cells secreting inflammatory cytokines. For example, CD15s ⁺FOXP3 ⁺ eTreg cells were increased in sarcoidosis, whereas it was nonsuppressive CD15s ⁻FOXP3 ⁺ T cells that were expanded in lupus flares. FOXP3 ⁺ cells induced from conventional CD4 ⁺ T cells by T-cell receptor stimulation hardly expressed CD15s. CD15s ⁺CD4 ⁺ T-cell depletion was sufficient to evoke and enhance in vitro immune responses against tumor or viral antigens. Collectively, we have identified CD15s as a biomarker instrumental in both phenotypic and functional analysis of FOXP3 ⁺CD4 ⁺ T-cell subpopulations in health and disease. It allows specific targeting of eTreg cells, rather than whole FOXP3 ⁺CD4 ⁺ T cells, in controlling immune responses.