Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Dominjon, A."
Sort by:
LiteBIRD: Mission Overview and Focal Plane Layout
by
Richards, P.
,
Otani, C.
,
Matsuura, S.
in
Astrophysics
,
Characterization and Evaluation of Materials
,
Condensed Matter Physics
2016
LiteBIRD is a proposed CMB polarization satellite project to probe the inflationary B-mode signal. The satellite is designed to measure the tensor-to-scalar ratio with a 68 % confidence level uncertainty of
σ
r
<
10
-
3
, including statistical, instrumental systematic, and foreground uncertainties. LiteBIRD will observe the full sky from the second Lagrange point for 3 years. We have a focal plane layout for observing frequency coverage that spans 40–402 GHz to characterize the galactic foregrounds. We have two detector candidates, transition-edge sensor bolometers and microwave kinetic inductance detectors. In both cases, a telecentric focal plane consists of approximately
2
×
10
3
superconducting detectors. We will present the mission overview of LiteBIRD, the project status, and the TES focal plane layout.
Journal Article
Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy
by
Sekiguchi, S.
,
Kuno, N.
,
Noda, K.
in
Astronomy
,
Broadband
,
Characterization and Evaluation of Materials
2018
Pyramid-type antireflective subwavelength structures for large-diameter (
>
30
cm
) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were
∼
3.42 and 1–
5
×
10
-
4
, respectively. Three different pyramid-type structures with a period of
265
μ
m
and depth of
600
μ
m
were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than
10
μ
m
. The reflectance of the lens flat surface was measured using a vector network analyzer to be between
-
8
and
-
17
dB in the range of 110–170 GHz, which was consistent with the result from the simulation.
Journal Article
Data Acquisition System of Nobeyama MKID Camera
by
Sekiguchi, S.
,
Zhai, G.
,
Mandal, P.
in
Beam switching
,
Cameras
,
Characterization and Evaluation of Materials
2018
We are developing a superconducting camera based on microwave kinetic inductance detectors (MKIDs) to observe 100-GHz continuum with the Nobeyama 45-m telescope. A data acquisition (DAQ) system for the camera has been designed to operate the MKIDs with the telescope. This system is required to connect the telescope control system (COSMOS) to the readout system of the MKIDs (MKID DAQ) which employs the frequency-sweeping probe scheme. The DAQ system is also required to record the reference signal of the beam switching for the demodulation by the analysis pipeline in order to suppress the sky fluctuation. The system has to be able to merge and save all data acquired both by the camera and by the telescope, including the cryostat temperature and pressure and the telescope pointing. A collection of software which implements these functions and works as a TCP/IP server on a workstation was developed. The server accepts commands and observation scripts from COSMOS and then issues commands to MKID DAQ to configure and start data acquisition. We made a commissioning of the MKID camera on the Nobeyama 45-m telescope and obtained successful scan signals of the atmosphere and of the Moon.
Journal Article
Radiation Tolerance of Aluminum Microwave Kinetic Inductance Detector
by
Yamada, Y.
,
Funaki, T.
,
Sekiguchi, S.
in
Characterization and Evaluation of Materials
,
Condensed Matter Physics
,
Magnetic Materials
2016
Microwave kinetic inductance detector (MKID) is one of the candidates of focal plane detector for future satellite missions such as LiteBIRD. For the space use of MKIDs, the radiation tolerance is one of the challenges to be characterized prior to the launch. Aluminum (Al) MKIDs with 50 nm thickness on silicon substrate and on sapphire substrate were irradiated with a proton beam of 160 MeV at the heavy ion medical accelerator in Chiba. The total water-equivalent absorbed dose was
∼
10 krad which should simulate the worst radiation absorption of 5 years observation at the Lagrange point L2. We measured characteristics of these MKIDs before and after the irradiation. We found no significant changes on resonator quality factor, responsivity, and recombination time of quasi-particles. The change on electrical noise equivalent power was also evaluated, and no significant increase was found at the noise level of
O
(
10
-
18
)
W/
Hz
.
Journal Article
LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection
2019
LiteBIRD is a candidate satellite for a strategic large mission of JAXA. With its expected launch in the middle of the 2020s with a H3 rocket, LiteBIRD plans to map the polarization of the cosmic microwave background radiation over the full sky with unprecedented precision. The full success of LiteBIRD is to achieve
δ
r
<
0.001
, where
δ
r
is the total error on the tensor-to-scalar ratio
r
. The required angular coverage corresponds to
2
≤
ℓ
≤
200
, where
ℓ
is the multipole moment. This allows us to test well-motivated cosmic inflation models. Full-sky surveys for 3 years at a Lagrangian point L2 will be carried out for 15 frequency bands between 34 and 448 GHz with two telescopes to achieve the total sensitivity of 2.5
μ
K arcmin with a typical angular resolution of 0.5
∘
at 150 GHz. Each telescope is equipped with a half-wave plate system for polarization signal modulation and a focal plane filled with polarization-sensitive TES bolometers. A cryogenic system provides a 100 mK base temperature for the focal planes and 2 K and 5 K stages for optical components.
Journal Article
The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
by
Otani, C.
,
Matsuura, S.
,
Jeong, O.
in
Adiabatic demagnetization cooling
,
Amplifiers
,
Antenna arrays
2018
Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through “B-mode” (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40–235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280–402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
Journal Article
Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD
by
Otani, C.
,
Matsuura, S.
,
Jeong, O.
in
Characterization and Evaluation of Materials
,
Condensed Matter Physics
,
Configurations
2018
The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1–3.2% at 101–448 GHz.
Journal Article
Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD
2018
© 2018 Springer Science+Business Media, LLC, part of Springer Nature The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1–3.2% at 101–448 GHz.
Journal Article
The LiteBIRD Satellite Mission - Sub-Kelvin Instrument
by
Yoshida, M
,
Borrill, J
,
Iida, T
in
Adiabatic demagnetization cooling
,
Antenna arrays
,
Big Bang theory
2018
Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through B-mode (divergent-free) polarization pattern embedded in the Cosmic Microwave Background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2,622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The U.S. LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40 GHz to 235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280 GHz to 402 GHz) with three types of single frequency detectors. The detectors will be made with Transition Edge Sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator.The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplidier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking
2014
We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nano-emitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely-used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the micro-second timescale.