Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Donker, Dirk W."
Sort by:
The ABCDE approach to difficult weaning from venoarterial extracorporeal membrane oxygenation
Venoarterial extracorporeal membrane oxygenation (VA ECMO) has been increasingly applied in patients with cardiogenic shock in recent years. Nevertheless, many patients cannot be successfully weaned from VA ECMO support and 1-year mortality remains high. A systematic approach could help to optimize clinical management in favor of weaning by identifying important factors in individual patients. Here, we provide an overview of pivotal factors that potentially prevent successful weaning of VA ECMO. We present this through a rigorous approach following the relatable acronym ABCDE, in order to facilitate widespread use in daily practice.
Using a Smartwatch to Record Precordial Electrocardiograms: A Validation Study
Smartwatches that support the recording of a single-lead electrocardiogram (ECG) are increasingly being used beyond the wrist, by placement on the ankle and on the chest. However, the reliability of frontal and precordial ECGs other than lead I is unknown. This clinical validation study assessed the reliability of an Apple Watch (AW) to obtain conventional frontal and precordial leads as compared to standard 12-lead ECGs in both subjects without known cardiac anomalies and patients with underlying heart disease. In 200 subjects (67% with ECG anomalies), a standard 12-lead ECG was performed, followed by AW recordings of the standard Einthoven leads (leads I, II, and III) and precordial leads V1, V3, and V6. Seven parameters (P, QRS, ST, and T-wave amplitudes, PR, QRS, and QT intervals) were compared through a Bland–Altman analysis, including the bias, absolute offset, and 95% limits of agreement. AW-ECGs recorded on the wrist but also beyond the wrist had similar durations and amplitudes compared to standard 12-lead ECGs. Significantly greater amplitudes were measured by the AW for R-waves in precordial leads V1, V3, and V6 (+0.094 mV, +0.149 mV, +0.129 mV, respectively, all p < 0.001), indicating a positive bias for the AW. AW can be used to record frontal, and precordial ECG leads, paving the way for broader clinical applications.
Distinct morphologies of arterial waveforms reveal preload‐, contractility‐, and afterload‐deficient hemodynamic instability: An in silico simulation study
Hemodynamic instability is frequently present in critically ill patients, primarily caused by a decreased preload, contractility, and/or afterload. We hypothesized that peripheral arterial blood pressure waveforms allow to differentiate between these underlying causes. In this in‐silico experimental study, a computational cardiovascular model was used to simulate hemodynamic instability by decreasing blood volume, left ventricular contractility or systemic vascular resistance, and additionally adaptive and compensatory mechanisms. From the arterial pressure waveforms, 45 features describing the morphology were discerned and a sensitivity analysis and principal component analysis were performed, to quantitatively investigate their discriminative power. During hemodynamic instability, the arterial waveform morphology changed distinctively, for example, the slope of the systolic upstroke having a sensitivity of 2.02 for reduced preload, 0.80 for reduced contractility, and −0.02 for reduced afterload. It was possible to differentiate between the three underlying causes based on the derived features, as demonstrated by the first two principal components explaining 99% of the variance in waveforms. The features with a high correlation coefficient (>0.25) to these principal components are describing the systolic up‐ and downstroke, and the anacrotic and dicrotic notches of the waveforms. In this study, characteristic peripheral arterial waveform morphologies were identified that allow differentiation between deficits in preload, contractility, and afterload causing hemodynamic instability. These findings are confined to an in silico simulation and warrant further experimental and clinical research in order to prove clinical usability in daily practice. In this in‐silico simulation study, characteristic peripheral arterial pressure waveform morphologies were identified that allow differentiation between deficits in preload, contractility, and afterload causing hemodynamic instability.
Head-to-toe bedside ultrasound for adult patients on extracorporeal membrane oxygenation
Bedside ultrasound represents a well-suited diagnostic and monitoring tool for patients on extracorporeal membrane oxygenation (ECMO) who may be too unstable for transport to other hospital areas for diagnostic tests. The role of ultrasound, however, starts even before ECMO initiation. Every patient considered for ECMO should have a thorough ultrasonographic assessment of cardiac and valvular function, as well as vascular anatomy without delaying ECMO cannulation. The role of pre-ECMO ultrasound is to confirm the indication for ECMO, identify clinical situations for which ECMO is not indicated, rule out contraindications, and inform the choice of ECMO configuration. During ECMO cannulation, the use of vascular and cardiac ultrasound reduces the risk of complications and ensures adequate cannula positioning. Ultrasound remains key for monitoring during ECMO support and troubleshooting ECMO complications. For instance, ultrasound is helpful in the assessment of drainage insufficiency, hemodynamic instability, biventricular function, persistent hypoxemia, and recirculation on venovenous (VV) ECMO. Lung ultrasound can be used to monitor signs of recovery on VV ECMO. Brain ultrasound provides valuable diagnostic and prognostic information on ECMO. Echocardiography is essential in the assessment of readiness for liberation from venoarterial (VA) ECMO. Lastly, post decannulation ultrasound mainly aims at identifying post decannulation thrombosis and vascular complications. This review will cover the role of head-to-toe ultrasound for the management of adult ECMO patients from decision to initiate ECMO to the post decannulation phase.
Cost-effectiveness in extracorporeal life support in critically ill adults in the Netherlands
Background Extracorporeal life support (ECLS) is used to support the cardiorespiratory function in case of severe cardiac and/or respiratory failure in critically ill patients. According to the ELSO guidelines ECLS should be considered when estimated mortality risk approximates 80%. ECLS seems an efficient therapy in terms of survival benefit, but no undisputed evidence is delivered yet. The aim of the study is to assess the health-related quality of life after ECLS treatment and its cost effectiveness. Methods We will perform a prospective observational cohort study. All adult patients who receive ECLS in the participating centers will be included. Exclusion criteria are patients in whom the ECLS is only used to bridge a procedure (like a high risk percutaneous coronary intervention or surgery) or the absence of informed consent. Data collection includes patient characteristics and data specific for ECLS treatment. Severity of illness and mortality risk is measured as precisely as possible using measurements for the appropriate age group and organ failure. For analyses on survival patients will act as their own control as we compare the actual survival with the estimated mortality on initiation of ECLS if conservative treatment would have been continued. Survivors are asked to complete validated questionnaires on health related quality of life (EQ5D-5 L) and on medical consumption and productivity losses (iMTA/iPCQ) at 6 and 12 months. Also the health related quality of life 1 month prior to ECLS initiation will be obtained by a questionnaire, if needed provided by relatives. With an estimated overall survival of 62% 210 patients need to be recruited to make a statement on cost effectiveness for all ECLS indications. Discussion If our hypothesis that ECLS treatment is cost-effective is confirmed by this prospective study this could lead to an even broader use of ECLS treatment. Trial registration The trial is registered at ( NCT02837419 ) registration date July 19, 2016 and with the Dutch trial register, http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6599
Mechanical circulatory support in cardiogenic shock: microaxial flow pumps for all and VA-ECMO consigned to the museum?
ECMO management also varied, with LV venting performed in 22% of patients in one trial [4] and in 6% in another [5]. [...]disease severity is rarely reported or adjusted for but can impact mortality and hence influence the results. [...]selection bias may also have occurred in some trials, especially those stopped prematurely because of low inclusion rates. Furthermore, in the DanGer Shock trial, VA-ECMO was used in 12% of the patients allocated to the intervention arm, suggesting that in one in seven patients, VA-ECMO had to be added because the MFP did not provide adequate tissue perfusion. [...]in a recent survey, only a small proportion (~ 20%) of cardiogenic shock episodes were AMI-associated [15], and many of these patients will also have experienced cardiac arrest. Predictors of mortality in patients treated with veno-arterial ECMO for cardiogenic shock complicating acute myocardial infarction: a systematic review and meta-analysis.
Quantification of recirculation as an adjuvant to transthoracic echocardiography for optimization of dual-lumen extracorporeal life support
Purpose Proper cannula positioning in single site veno-venous extracorporeal life support (vv-ELS) is cumbersome and necessitates image guidance to obtain a safe and stable position within the heart and the caval veins. Importantly, image-guided cannula positioning alone is not sufficient, as possible recirculation cannot be quantified. Methods and results We present an ultrasound dilution technique allowing quantification of recirculation for optimizing vv-ELS. Conclusion We suggest quantification of recirculation in addition to image guidance to provide optimal vv-ELS.
Prognostic models for mortality risk in patients requiring ECMO
PurposeTo provide an overview and evaluate the performance of mortality prediction models for patients requiring extracorporeal membrane oxygenation (ECMO) support for refractory cardiocirculatory or respiratory failure.MethodsA systematic literature search was undertaken to identify studies developing and/or validating multivariable prediction models for all-cause mortality in adults requiring or receiving veno-arterial (V-A) or veno-venous (V-V) ECMO. Estimates of model performance (observed versus expected (O:E) ratio and c-statistic) were summarized using random effects models and sources of heterogeneity were explored by means of meta-regression. Risk of bias was assessed using the Prediction model Risk Of BiAS Tool (PROBAST).ResultsAmong 4905 articles screened, 96 studies described a total of 58 models and 225 external validations. Out of all 58 models which were specifically developed for ECMO patients, 14 (24%) were ever externally validated. Discriminatory ability of frequently validated models developed for ECMO patients (i.e., SAVE and RESP score) was moderate on average (pooled c-statistics between 0.66 and 0.70), and comparable to general intensive care population-based models (pooled c-statistics varying between 0.66 and 0.69 for the Simplified Acute Physiology Score II (SAPS II), Acute Physiology and Chronic Health Evaluation II (APACHE II) score and Sequential Organ Failure Assessment (SOFA) score). Nearly all models tended to underestimate mortality with a pooled O:E > 1. There was a wide variability in reported performance measures of external validations, reflecting a large between-study heterogeneity. Only 1 of the 58 models met the generally accepted Prediction model Risk Of BiAS Tool criteria of good quality. Importantly, all predicted outcomes were conditional on the fact that ECMO support had already been initiated, thereby reducing their applicability for patient selection in clinical practice.ConclusionsA large number of mortality prediction models have been developed for ECMO patients, yet only a minority has been externally validated. Furthermore, we observed only moderate predictive performance, large heterogeneity between-study populations and model performance, and poor methodological quality overall. Most importantly, current models are unsuitable to provide decision support for selecting individuals in whom initiation of ECMO would be most beneficial, as all models were developed in ECMO patients only and the decision to start ECMO had, therefore, already been made.
Definition and management of right ventricular injury in adult patients receiving extracorporeal membrane oxygenation for respiratory support using the Delphi method: a PRORVnet study. Expert position statements
PurposeVeno-venous extracorporeal membrane oxygenation (VV-ECMO) is an integral part of the management algorithm of patients with severe respiratory failure refractory to evidence-based conventional treatments. Right ventricular injury (RVI) pertaining to abnormalities in the dimensions and/or function of the right ventricle (RV) in the context of VV-ECMO significantly influences mortality. However, in the absence of a universally accepted RVI definition and evidence-based guidance for the management of RVI in this very high-risk patient cohort, variations in clinical practice continue to exist.MethodsFollowing a systematic search of the literature, an international Steering Committee consisting of eight healthcare professionals involved in the management of patients receiving ECMO identified domains and knowledge gaps pertaining to RVI definition and management where the evidence is limited or ambiguous. Using a Delphi process, an international panel of 52 Experts developed Expert position statements in those areas. The process also conferred RV-centric overarching open questions for future research. Consensus was defined as achieved when 70% or more of the Experts agreed or disagreed on a Likert-scale statement or when 80% or more of the Experts agreed on a particular option in multiple‐choice questions.ResultsThe Delphi process was conducted through four rounds and consensus was achieved on 31 (89%) of 35 statements from which 24 Expert position statements were derived. Expert position statements provided recommendations for RVI nomenclature in the setting of VV-ECMO, a multi-modal diagnostic approach to RVI, the timing and parameters of diagnostic echocardiography, and VV-ECMO settings during RVI assessment and management. Consensus was not reached on RV-protective driving pressure thresholds or the effect of prone positioning on patient-centric outcomes.ConclusionThe proposed definition of RVI in the context of VV-ECMO needs to be validated through a systematic aggregation of data across studies. Until further evidence emerges, the Expert position statements can guide informed decision-making in the management of these patients.