Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
34
result(s) for
"Doody, Gina M."
Sort by:
Biallelic mutations in calcium release activated channel regulator 2A (CRACR2A) cause a primary immunodeficiency disorder
2021
CRAC channel regulator 2 A (CRACR2A) is a large Rab GTPase that is expressed abundantly in T cells and acts as a signal transmitter between T cell receptor stimulation and activation of the Ca 2+ -NFAT and JNK-AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies, however, to date no patient with damaging variants in CRACR2A has been identified. In this study, we describe a patient harboring biallelic variants in CRACR2A [paternal allele c.834 gaG> gaT (p.E278D) and maternal alelle c.430 Aga > Gga (p.R144G) c.898 Gag> Tag (p.E300*)], the gene encoding CRACR2A. The 33-year-old patient of East-Asian origin exhibited late onset combined immunodeficiency characterised by recurrent chest infections, panhypogammaglobulinemia and CD4+ T cell lymphopenia. In vitro exposure of patient B cells to a T-dependent stimulus resulted in normal generation of antibody-secreting cells, however the patient’s T cells showed pronounced reduction in CRACR2A protein levels and reduced proximal TCR signaling, including dampened SOCE and reduced JNK phosphorylation, that contributed to a defect in proliferation and cytokine production. Expression of individual allelic mutants in CRACR2A-deleted T cells showed that the CRACR2A E278D mutant did not affect JNK phosphorylation, but impaired SOCE which resulted in reduced cytokine production. The truncated double mutant CRACR2A R144G/E300* showed a pronounced defect in JNK phosphorylation as well as SOCE and strong impairment in cytokine production. Thus, we have identified variants in CRACR2A that led to late-stage combined immunodeficiency characterized by loss of function in T cells.
Journal Article
B‐cell capacity for differentiation changes with age
2021
Background Age‐related immune deficiencies are thought to be responsible for increased susceptibility to infection in older adults, with alterations in lymphocyte populations becoming more prevalent over time. The loss of humoral immunity in ageing was attributed to the diminished numbers of B cells and the reduced ability to generate immunoglobulin. Aims To compare the intrinsic B‐cell capacity for differentiation into mature plasma cells (PCs), between young and old donors, using in vitro assays, providing either effective T‐cell help or activation via TLR engagement. Methods B cells were isolated from healthy individuals, in younger (30–38 years) and older (60–64 years) donors. An in vitro model system of B‐cell differentiation was used, analysing 5 differentiation markers by flow cytometry, under T‐dependent (TD: CD40/BCR stimulation) or T‐independent (TI: TLR7/BCR activation) conditions. Antibody secretion was measured by ELISA and gene expression using qPCR. Results TI and TD differentiation resulted in effective proliferation of B cells followed by their differentiation into PC. B‐cell‐executed TI differentiation was faster, all differentiation marker and genes being expressed earlier than under TD differentiation (day 6), although generating less viable cells and lower antibody levels (day 13). Age‐related differences in B‐cell capacity for differentiation were minimal in TD differentiation. In contrast, in TI differentiation age significantly affected proliferation, viability, differentiation, antibody secretion and gene expression, older donors being more efficient. Conclusion Altogether, B‐cell differentiation into PC appeared similar between age groups when provided with T‐cell help, in contrast to TI differentiation, where multiple age‐related changes suggest better capacities in older donors. These new findings may help explain the emergence of autoantibodies in ageing. B‐cell differentiation into plasma cell appeared similar between age groups when provided with efficient T‐cell help. In contrast, in TI differentiation age significantly affected B‐cell proliferation, viability, depth of differentiation, antibody secretion and gene expression, suggesting better capacities in older donors.
Journal Article
Site-1 protease function is essential for the generation of antibody secreting cells and reprogramming for secretory activity
2018
The unfolded protein response (UPR) and activation of XBP1 is necessary for high secretory efficiency and functional differentiation of antibody secreting cells (ASCs). The UPR additionally includes a branch in which membrane-bound transcription factors, exemplified by ATF6, undergo intramembrane-proteolysis by the sequential action of site-1 (MBTPS1/S1P) and site-2 proteases (MBTPS2/S2P) and release of the cytoplasmic domain as an active transcription factor. Such regulation is shared with a family of CREB3-related transcription factors and sterol regulatory element-binding proteins (SREBPs). Of these, we identify that the CREB3 family member CREB3L2 is strongly induced and activated during the transition from B-cell to plasma cell state. Inhibition of site-1 protease leads to a profound reduction in plasmablast number linked to induction of autophagy. Plasmablasts generated in the presence of site-1 protease inhibitor segregated into CD38
high
and CD38
low
populations, the latter characterized by a marked reduction in the capacity to secrete IgG. Site-1 protease inhibition is accompanied by a distinctive change in gene expression associated with amino acid, steroid and fatty acid synthesis pathways. These results demonstrate that transcriptional control of metabolic programs necessary for secretory activity can be targeted via site-1 protease inhibition during ASC differentiation.
Journal Article
Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation
by
Tooze, Reuben
,
Turner, Martin
,
Bell, Sarah E.
in
Animals
,
Antibody Formation
,
Antigens, Differentiation, T-Lymphocyte - immunology
2001
B and T lymphocytes develop normally in mice lacking the guanine nucleotide exchange factor Vav-2. However, the immune responses to type II thymus-independent antigen as well as the primary response to thymus-dependent (TD) antigen are defective. Vav-2–deficient mice are also defective in their ability to switch immunoglobulin class, form germinal centers and generate secondary immune responses to TD antigens. Mice lacking both Vav-1 and Vav-2 contain reduced numbers of B lymphocytes and display a maturational block in the development of mature B cells. B cells from Vav-1
−/−
Vav-2
−/−
mice respond poorly to antigen receptor triggering, both in terms of proliferation and calcium release. These studies show the importance of Vav-2 in humoral immune responses and B cell maturation.
Journal Article
Inherited CD19 Deficiency Does Not Impair Plasma Cell Formation or Response to CXCL12
by
Bonthron, David T.
,
Crinnion, Laura A.
,
Carter, Clive
in
Adaptor Proteins, Signal Transducing - metabolism
,
AKT protein
,
antigens
2023
Background
The human CD19 antigen is expressed throughout B cell ontogeny with the exception of neoplastic plasma cells and a subset of normal plasma cells. CD19 plays a role in propagating signals from the B cell receptor and other receptors such as CXCR4 in mature B cells. Studies of CD19-deficient patients have confirmed its function during the initial stages of B cell activation and the production of memory B cells; however, its role in the later stages of B cell differentiation is unclear.
Objective
Using B cells from a newly identified CD19-deficient individual, we investigated the role of CD19 in the generation and function of plasma cells using an in vitro differentiation model.
Methods
Flow cytometry and long-read nanopore sequencing using locus-specific long-range amplification products were used to screen a patient with suspected primary immunodeficiency. Purified B cells from the patient and healthy controls were activated with CD40L, IL-21, IL-2, and anti-Ig, then transferred to different cytokine conditions to induce plasma cell differentiation. Subsequently, the cells were stimulated with CXCL12 to induce signalling through CXCR4. Phosphorylation of key downstream proteins including ERK and AKT was assessed by Western blotting. RNA-seq was also performed on in vitro differentiating cells.
Results
Long-read nanopore sequencing identified the homozygous pathogenic mutation c.622del (p.Ser208Profs*19) which was corroborated by the lack of CD19 cell surface staining. CD19-deficient B cells that are predominantly naïve generate phenotypically normal plasma cells with expected patterns of differentiation-associated genes and normal levels of CXCR4. Differentiated CD19-deficient cells were capable of responding to CXCL12; however, plasma cells derived from naïve B cells, both CD19-deficient and sufficient, had relatively diminished signaling compared to those generated from total B cells. Additionally, CD19 ligation on normal plasma cells results in AKT phosphorylation.
Conclusion
CD19 is not required for generation of antibody-secreting cells or the responses of these populations to CXCL12, but may alter the response other ligands that require CD19 potentially affecting localization, proliferation, or survival. The observed hypogammaglobulinemia in CD19-deficient individuals is therefore likely attributable to the lack of memory B cells.
Journal Article
A Role in B Cell Activation for CD22 and the Protein Tyrosine Phosphatase SHP
by
Delibrias, Catherine C.
,
Lin, Jiejian
,
Justement, Louis B.
in
Amino Acid Sequence
,
Analysis of the immune response. Humoral and cellular immunity
,
Animals
1995
CD22 is a membrane immunoglobulin (mlg)-associated protein of B cells. CD22 is tyrosine-phosphorylated when mlg is ligated. Tyrosine-phosphorylated CD22 binds and activates SHP, a protein tyrosine phosphatase known to negatively regulate signaling through mlg. Ligation of CD22 to prevent its coaggregation with mlg lowers the threshold at which mlg activates the B cell by a factor of 100. In secondary lymphoid organs, CD22 may be sequestered away from mlg through interactions with counterreceptors on T cells. Thus, CD22 is a molecular switch for SHP that may bias mlg signaling to anatomic sites rich in T cells.
Journal Article
Spontaneous EBV-Reactivation during B Cell Differentiation as a Model for Polymorphic EBV-Driven Lymphoproliferation
2023
Epstein-Barr virus (EBV)-driven B cell neoplasms arise from the reactivation of latently infected B cells. In a subset of patients, EBV was seen to drive a polymorphous lymphoproliferative disorder (LPD) in which B cell differentiation was retained. In this work, spontaneous EBV reactivation following B cell mitogen stimulation was shown to provide a potential model of polymorphic EBV-driven LPD. Here, we developed an in vitro model of plasma cell (PC) differentiation from peripheral blood memory B cells. To assess the frequency and phenotypes of EBV-associated populations derived during differentiation, we analysed eight differentiations during the PC stage with a targeted single-cell gene expression panel. We identified subpopulations of EBV-gene expressing cells with PC and/or B cell expression features in differentiations from all tested donors. EBV-associated cells varied in frequency, ranging from 3–28% of cells. Most EBV-associated cells expressed PC genes such as XBP1 or MZB1, and in all samples these included a quiescent PC fraction that lacked cell a cycle gene expression. With increasing EBV-associated cells, populations with B cell features became prominent, co-expressing a germinal centre (GC) and activating B cell gene patterns. The presence of highly proliferative EBV-associated cells was linked to retained MS4A1/CD20 expression and IGHM and IGHD co-expression, while IGHM class-switched cells were enriched in quiescent PC fractions. Thus, patterns of gene expression in primary EBV reactivation were shown to include features related to GC B cells, which was also observed in EBV-transformed lymphoblastoid cell lines. This suggests a particular association between spontaneously developing EBV-expansions and IgM+ IgD+ non-switched B cells.
Journal Article
Enforced MYC expression directs a distinct transcriptional state during plasma cell differentiation
by
Vardaka, Panagiota
,
Tooze, Reuben M
,
Page, Eden
in
Antigens
,
Apoptosis
,
B-Lymphocytes - cytology
2025
MYC provides a rheostat linking cell growth and division. Deregulation of MYC drives transformation in aggressive B-cell neoplasms, often accompanied by BCL2-mediated apoptotic protection. We assess how MYC and BCL2 deregulation impacts on the ability of human B cells to complete plasma cell (PC) differentiation. As B cells differentiate, MYC deregulation has little impact on the regulatory circuitry controlling B-cell identity. Induction of transcriptional regulators BLIMP1 and IRF4 remains intact and accompanies loss of B-cell surface markers. However, such differentiating cells develop an aberrant surface phenotype with reduced expression of phenotypic markers of differentiation. Although functional antibody secretion is established, enforced MYC expression dampens the expression of secretory programmes associated with PC differentiation. Accompanying this, diverse changes in the expression of genes related to translation and metabolism are observed. The establishment of this aberrant differentiated state depends on MYC homology box II. This dependence is profound and resolves to residue W135.
Journal Article
Biallelic mutations in IRF8 impair human NK cell maturation and function
by
Cant, Andrew J.
,
Muzny, Donna M.
,
Doody, Gina M.
in
Acquisitions & mergers
,
Alleles
,
Analysis
2017
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8-/-, but not Irf8+/-, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense.
Journal Article