Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Doronin, Konstantin"
Sort by:
Coagulation Factor X Activates Innate Immunity to Human Species C Adenovirus
Although coagulation factors play a role in host defense for \"living fossils\" such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of nuclear factor kB-dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling. Our study implicates host factor \"decoration\" of the virus as a mechanism to trigger an innate immune sensor that responds to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell.
Structural and Functional Characterization of Anti-A33 Antibodies Reveal a Potent Cross-Species Orthopoxviruses Neutralizer
Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus.
The small molecule AZD6244 inhibits dengue virus replication in vitro and protects against lethal challenge in a mouse model
Dengue virus (DENV) is the most common mosquito-borne viral disease. The World Health Organization estimates that 400 million new cases of dengue fever occur every year. Approximately 500,000 individuals develop severe and life-threatening complications from dengue fever, such as dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF), which cause 22,000 deaths yearly. Currently, there are no specific licensed therapeutics to treat DENV illness. We have previously shown that the MEK/ERK inhibitor U0126 inhibits the replication of the flavivirus yellow fever virus. In this study, we demonstrate that the MEK/ERK inhibitor AZD6244 has potent antiviral efficacy in vitro against DENV-2, DENV-3, and Saint Louis encephalitis virus (SLEV). We also show that it is able to protect AG129 mice from a lethal challenge with DENV-2 (D2S20). The molecule is currently undergoing phase III clinical trials for the treatment of non-small-cell lung cancer. The effect of AZD6244 on the DENV life cycle was attributed to a blockade of morphogenesis. Treatment of AG129 mice twice daily with oral doses of AZD6244 (100 mg/kg/day) prevented the animals from contracting dengue hemorrhagic fever (DHF)-like lethal disease upon intravenous infection with 1 × 105 PFU of D2S20. The effectiveness of AZD6244 was observed even when the treatment of infected animals was initiated 1-2 days postinfection. This was also followed by a reduction in viral copy number in both the serum and the spleen. There was also an increase in IL-1β and TNF-α levels in mice that were infected with D2S20 and treated with AZD6244 in comparison to infected mice that were treated with the vehicle only. These data demonstrate the potential of AZD6244 as a new therapeutic agent to treat DENV infection and possibly other flavivirus diseases.
BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge
Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against mortality and morbidity. This work demonstrated the efficacy of BoHV-4 based vectors and the use of BoHV-4 as a vaccine-vector platform.
Avian adenovirus vector CELO-TK displays anticancer activity in human cancer cells and suppresses established murine melanoma tumors
Avian adenovirus CELO is a novel adenovirus vector system with the advantages of efficient production, high virion stability, and the absence of crossreactivity with Ad5-neutralizing antibodies. In this study, we evaluated the anticancer efficacy of a CELO vector encoding the herpes simplex virus type 1 thymidine kinase, a prodrug-activating therapeutic gene. Vectors carrying the gene for HSV-tk or EGFP under the control of the HCMV promoter in place of the “nonessential” region of the CELO genome were constructed. Anticancer activity of the CELO-TK vector was studied in vitro , in human and murine tumor cells in cell culture, and in vivo , in established subcutaneous murine B16 melanoma tumors in C57BL/6 mice. The CELO-TK vector mediated delivery of functional HSV-tk to tumor cell lines in cell culture. Comparison of the CELO-TK vector to a first-generation human adenovirus type 5 vector Ad5-TK in cultured H1299 cells showed equal levels of functional activity at increasing multiplicities of infection with CELO-based vector. CELO vectors allowed for transduction and expression of EGFP and HSV-tk genes in subcutaneous melanoma tumors in C57BL/6 mice. Intratumoral injections of CELO-TK followed by ganciclovir administration resulted in suppression of tumor growth and significantly increased the median of survival. The results of the study demonstrated the efficacy of CELO vector as a vehicle for the delivery of prodrug-activating genes such as HSV-tk to tumor cells in vitro and in vivo .
Radiation increases the activity of oncolytic adenovirus cancer gene therapy vectors that overexpress the ADP (E3-11.6K) protein
We have described three potential adenovirus type 5 (Ad5)-based replication-competent cancer gene therapy vectors named KD1, KD3, and VRX-007. All three vectors overexpress an Ad5 protein named Adenovirus Death Protein (ADP, also named E3–11.6 K protein). ADP is required for efficient lysis of Ad5-infected cells and spread of virus from cell to cell, and thus its overexpression increases the oncolytic activity of the vectors. KD1 and KD3 contain mutations in the Ad5 E1A gene that knock out binding of the E1A proteins to cellular p300/CBP and pRB; these mutations allow KD1 and KD3 to grow well in cancer cells but not in normal cells. VRX-007 has wild-type E1A. Here we report that radiation increases the oncolytic activity of KD1, KD3, and VRX-007. This increased activity was observed in cultured cells, and it was not because of radiation-induced replication of the vectors. The combination of radiation plus KD3 suppressed the growth of A549 lung adenocarcinoma xenografts in nude mice more efficiently than radiation alone or KD3 alone. The combination of ADP-overexpressing vectors and radiation may have potential in treating cancer.
Expanded Anticancer Therapeutic Window of Hexon-modified Oncolytic Adenovirus
One of the significant hurdles toward safe and efficacious systemic treatment of cancer with oncolytic adenoviruses (Ads) is dose-limiting hepatotoxicity that prevents the increase of a therapeutic dose. In this study, we expanded the therapeutic window of oncolytic serotype 5 Ad (Ad5) by a genetic modification of hypervariable loop 5 (HVR5) in the capsid protein hexon that prevented infection of hepatocytes due to ablation of binding to blood factors. This oncolytic virus, Ad-GL-HB, had significantly reduced levels of hepatocyte transduction in immunocompetent and immunodeficient mice as compared to parental virus Ad-GL. The hepatocyte detargeting decreased liver damage and increased the maximum tolerated dose of Ad-GL-HB tenfold relative to that of Ad-GL. Intravenous (i.v.) injection of Ad-GL or Ad-GL-HB into tumor-bearing mice produced equally increased survival rates demonstrating that while Ad-GL-HB detargeted hepatocytes, it sustained tumor cell infection after systemic administration. The significantly improved safety of the virus allowed it to be used at increased doses for improved systemic antitumor efficacy. Our results suggest that hexon modifications provide valuable strategies for systemic oncolytic Ad therapy.
Adenovirus replication–competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc)
The successful clinical application of adenovirus (Ad) in cancer control has been of limited success because of the current inability to infect the majority of cancer cells with a large amount of vector. In this study, we show that when human lung tumors growing in immunodeficient nude mice were coinfected with a replication-defective (RD) Ad vector expressing green fluorescent protein and a replication-competent (RC) Ad vector named KD3, KD3 enhanced the expression of green fluorescent protein throughout the tumor. Also, KD3 and another RC vector named KD1 complemented the expression of luciferase from a RD vector in a human liver tumor xenotransplant in nude mice. Altogether, these results suggest that the combination of a RD vector with a RC vector might be a more effective treatment for cancer than either vector alone due to more widespread dissemination of the virus.
Targeting Interferon-α Increases Antitumor Efficacy and Reduces Hepatotoxicity of E1A-mutated Spread-enhanced Oncolytic Adenovirus
Novel approaches are needed to improve the antitumor potency and to increase the cancer specificity of oncolytic adenoviruses (Ad). We hypothesized that the combination of interferon-alpha (IFN-α) expression with a specific mutation in the e1a gene of Ad could target vector replication to genetic defects in the IFN-α pathway resulting in both improved antitumor efficacy and reduced toxicity. The conditionally replicative Ad vector KD3-IFN carries the dl1101/1107 mutation in the e1a gene that eliminates binding of E1A proteins to p300/CBP and pRb. KD3-IFN expresses human IFN-α in concurrence with vector replication and overexpresses the adenovirus death protein (ADP; E3-11.6K). The antitumor activity of KD3-IFN was significantly higher than that of a control vector in established human hepatocellular carcinoma tumors in immunodeficient mice and in hamster kidney cancer tumors in immunocompetent Syrian hamsters. The dl1101/1107 mutation rendered Ad replication sensitive to the antiviral effect of IFN-α in normal as opposed to cancer cells. These results translated to reduced vector toxicity upon systemic administration to C57BL/6 mice. The combination of Ad oncolysis, ADP overexpression, and IFN-α-mediated immunotherapy represents a three-pronged approach for increasing the anticancer efficacy of replicative Ads. Exploiting the dl1101/1107 mutation provides a mechanism for additional selectivity of IFN-α-expressing replication-competent Ads.