Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Doshi, Keval"
Sort by:
Real-Time Detection and Classification of Power Quality Disturbances
by
Mozaffari, Mahsa
,
Doshi, Keval
,
Yilmaz, Yasin
in
Alternative energy sources
,
Analysis
,
anomaly detection
2022
This paper considers the problem of real-time detection and classification of power quality disturbances in power delivery systems. We propose a sequential and multivariate disturbance detection method (aiming for quick and accurate detection). Our proposed detector follows a non-parametric and supervised approach, i.e., it learns nominal and anomalous patterns from training data involving clean and disturbance signals. The multivariate nature of the method enables joint processing of data from multiple meters, facilitating quicker detection as a result of the cooperative analysis. We further extend our supervised sequential detection method to a multi-hypothesis setting, which aims to classify the disturbance events as quickly and accurately as possible in a real-time manner. The multi-hypothesis method requires a training dataset per hypothesis, i.e., per each disturbance type as well as the ’no disturbance’ case. The proposed classification method is demonstrated to quickly and accurately detect and classify power disturbances.
Journal Article
Online Multivariate Anomaly Detection and Localization for High-Dimensional Settings
2022
This paper considers the real-time detection of abrupt and persistent anomalies in high-dimensional data streams. The goal is to detect anomalies quickly and accurately so that the appropriate countermeasures could be taken in time before the system possibly gets harmed. We propose a sequential and multivariate anomaly detection method that scales well to high-dimensional datasets. The proposed method follows a nonparametric, i.e., data-driven, and semi-supervised approach, i.e., trains only on nominal data. Thus, it is applicable to a wide range of applications and data types. Thanks to its multivariate nature, it can quickly and accurately detect challenging anomalies, such as changes in the correlation structure. Its asymptotic optimality and computational complexity are comprehensively analyzed. In conjunction with the detection method, an effective technique for localizing the anomalous data dimensions is also proposed. The practical use of proposed algorithms are demonstrated using synthetic and real data, and in variety of applications including seizure detection, DDoS attack detection, and video surveillance.
Journal Article
Self-Supervised Learning for Online Anomaly Detection in High-Dimensional Data Streams
2023
In this paper, we address the problem of detecting and learning anomalies in high-dimensional data-streams in real-time. Following a data-driven approach, we propose an online and multivariate anomaly detection method that is suitable for the timely and accurate detection of anomalies. We propose our method for both semi-supervised and supervised settings. By combining the semi-supervised and supervised algorithms, we present a self-supervised online learning algorithm in which the semi-supervised algorithm trains the supervised algorithm to improve its detection performance over time. The methods are comprehensively analyzed in terms of computational complexity, asymptotic optimality, and false alarm rate. The performances of the proposed algorithms are also evaluated using real-world cybersecurity datasets, that show a significant improvement over the state-of-the-art results.
Journal Article
Video Anomaly Detection: Practical Challenges for Learning Algorithms
Anomaly detection in surveillance videos is attracting an increasing amount of attention. Despite the competitive performance of several existing methods, they lack theoretical performance analysis, particularly due to the complex deep neural network architectures used in decision making. Additionally, real-time decision making is an important but mostly neglected factor in this domain. Much of the existing methods that claim to be online, depend on batch or offline processing in practice. Furthermore, several critical tasks such as continual learning, model interpretability and cross-domain adaptability are completely neglected in existing works. Motivated by these research gaps, in this dissertation we discuss our work on real-time video anomaly detection, specifically addressing challenges encountered in a practical implementation. We begin by proposing a multi-objective deep learning module along with a statistical anomaly detection module, and demonstrate its effectiveness on several publicly available data sets. Furthermore, we consider practical challenges such as continual learning and few-shot learning, which humans can easily do but remains to be a significant challenge for machines. A novel algorithm designed for such practical challenges is also proposed. For performance evaluation in this new framework, we introduce a new dataset which is significantly more comprehensive than the existing benchmark datasets, and a new performance metric which takes into account the fundamental temporal aspect of video anomaly detection. Finally, learning from limited data in video surveillance is important for sustainable performance while adapting to new information in a scene over time or adapting to a different scene. In a real-world scene, for an anomaly detection algorithm, all possible nominal patterns and behaviors are not typically available immediately for a single training session. In contrast, labeled nominal data patterns may become available irregularly over a long time horizon, and the anomaly detection algorithm needs to quickly learn such new patterns from limited samples for acceptable performance. Otherwise, it would suffer from frequent false alarms. Cross-domain adaptability (i.e., transfer learning to another surveillance scene) is another task where the anomaly detection algorithm has to quickly learn from limited nominal training data to achieve acceptable performance. Particularly, we study these three problems (few-shot learning, continual learning, cross-domain adaptability) in a multi-task learning setting.
Dissertation
End-to-End Semantic Video Transformer for Zero-Shot Action Recognition
2022
While video action recognition has been an active area of research for several years, zero-shot action recognition has only recently started gaining traction. In this work, we propose a novel end-to-end trained transformer model which is capable of capturing long range spatiotemporal dependencies efficiently, contrary to existing approaches which use 3D-CNNs. Moreover, to address a common ambiguity in the existing works about classes that can be considered as previously unseen, we propose a new experimentation setup that satisfies the zero-shot learning premise for action recognition by avoiding overlap between the training and testing classes. The proposed approach significantly outperforms the state of the arts in zero-shot action recognition in terms of the the top-1 accuracy on UCF-101, HMDB-51 and ActivityNet datasets. The code and proposed experimentation setup are available in GitHub: https://github.com/Secure-and-Intelligent-Systems-Lab/SemanticVideoTransformer
Synthetic Image Augmentation for Improved Classification using Generative Adversarial Networks
2019
Object detection and recognition has been an ongoing research topic for a long time in the field of computer vision. Even in robotics, detecting the state of an object by a robot still remains a challenging task. Also, collecting data for each possible state is also not feasible. In this literature, we use a deep convolutional neural network with SVM as a classifier to help with recognizing the state of a cooking object. We also study how a generative adversarial network can be used for synthetic data augmentation and improving the classification accuracy. The main motivation behind this work is to estimate how well a robot could recognize the current state of an object
An Efficient Approach for Anomaly Detection in Traffic Videos
2021
Due to its relevance in intelligent transportation systems, anomaly detection in traffic videos has recently received much interest. It remains a difficult problem due to a variety of factors influencing the video quality of a real-time traffic feed, such as temperature, perspective, lighting conditions, and so on. Even though state-of-the-art methods perform well on the available benchmark datasets, they need a large amount of external training data as well as substantial computational resources. In this paper, we propose an efficient approach for a video anomaly detection system which is capable of running at the edge devices, e.g., on a roadside camera. The proposed approach comprises a pre-processing module that detects changes in the scene and removes the corrupted frames, a two-stage background modelling module and a two-stage object detector. Finally, a backtracking anomaly detection algorithm computes a similarity statistic and decides on the onset time of the anomaly. We also propose a sequential change detection algorithm that can quickly adapt to a new scene and detect changes in the similarity statistic. Experimental results on the Track 4 test set of the 2021 AI City Challenge show the efficacy of the proposed framework as we achieve an F1-score of 0.9157 along with 8.4027 root mean square error (RMSE) and are ranked fourth in the competition.
A Modular and Unified Framework for Detecting and Localizing Video Anomalies
2021
Anomaly detection in videos has been attracting an increasing amount of attention. Despite the competitive performance of recent methods on benchmark datasets, they typically lack desirable features such as modularity, cross-domain adaptivity, interpretability, and real-time anomalous event detection. Furthermore, current state-of-the-art approaches are evaluated using the standard instance-based detection metric by considering video frames as independent instances, which is not ideal for video anomaly detection. Motivated by these research gaps, we propose a modular and unified approach to the online video anomaly detection and localization problem, called MOVAD, which consists of a novel transfer learning based plug-and-play architecture, a sequential anomaly detector, a mathematical framework for selecting the detection threshold, and a suitable performance metric for real-time anomalous event detection in videos. Extensive performance evaluations on benchmark datasets show that the proposed framework significantly outperforms the current state-of-the-art approaches.
Road Damage Detection using Deep Ensemble Learning
2020
Road damage detection is critical for the maintenance of a road, which traditionally has been performed using expensive high-performance sensors. With the recent advances in technology, especially in computer vision, it is now possible to detect and categorize different types of road damages, which can facilitate efficient maintenance and resource management. In this work, we present an ensemble model for efficient detection and classification of road damages, which we have submitted to the IEEE BigData Cup Challenge 2020. Our solution utilizes a state-of-the-art object detector known as You Only Look Once (YOLO-v4), which is trained on images of various types of road damages from Czech, Japan and India. Our ensemble approach was extensively tested with several different model versions and it was able to achieve an F1 score of 0.628 on the test 1 dataset and 0.6358 on the test 2 dataset.
Online Anomaly Detection in Surveillance Videos with Asymptotic Bounds on False Alarm Rate
2020
Anomaly detection in surveillance videos is attracting an increasing amount of attention. Despite the competitive performance of recent methods, they lack theoretical performance analysis, particularly due to the complex deep neural network architectures used in decision making. Additionally, online decision making is an important but mostly neglected factor in this domain. Much of the existing methods that claim to be online, depend on batch or offline processing in practice. Motivated by these research gaps, we propose an online anomaly detection method in surveillance videos with asymptotic bounds on the false alarm rate, which in turn provides a clear procedure for selecting a proper decision threshold that satisfies the desired false alarm rate. Our proposed algorithm consists of a multi-objective deep learning module along with a statistical anomaly detection module, and its effectiveness is demonstrated on several publicly available data sets where we outperform the state-of-the-art algorithms. All codes are available at https://github.com/kevaldoshi17/Prediction-based-Video-Anomaly-Detection-.