Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Dou, Lin-ming"
Sort by:
Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China
2014
As one of the dynamic disasters of coal mines, rockburst seriously affects underground safe coal mining. Based on the laboratory test, field test, and theoretical analysis, this study proposed the principle of the rock burst induced by the combination of dynamic and static stresses and divided such rock burst into three types, including induced by primary dynamic stress, mainly induced by dynamic stress, and by dynamic stress in low critical stress state. The expressions of the static stress induced by coal mining and dynamic stress induced by mining tremors were obtained. Moreover, theories and technologies at home and abroad were summarized concerning the monitoring, forecasting, and preventing of rockburst. These mainly include the zoning and leveling forecasting method, electromagnetic radiation technology, elastic wave and seismic wave computed tomography technologies in aspect of rockburst monitoring, as well as the intensity weakening theory, the strong-soft-strong structure effect, the directional hydraulic fracturing technology, the roadway support system in regards of rockburst prevention. The prospect of rockburst development suggested that researches concerning the rockburst mechanism should be quantitatively developed around the roadway and coalface surrounding coal-rock mass. It should be focused on the rockburst mechanism and prevention technology of mining with over 1,000 km deep and mining in large tectonic zone. In addition, the monitoring and prevention of rockburst should be based on rockburst mechanism.
Journal Article
Mechanism Analysis of Roadway Rockbursts Induced by Dynamic Mining Loading and Its Application
by
Wang, Zheng-yi
,
Dou, Lin-ming
,
Wang, Gui-feng
in
anchoring supporting structure
,
dynamic failure
,
Failure analysis
2018
Roadway rockbursts seriously restrict the safety production of coal mines; however, the interaction between dynamic loads and roadway surrounding rocks has not been fully considered in existing studies. A dynamic failure analysis model of anchoring supporting structures was established to analyze dynamic effects of stress waves. Taking a rockburst in LW402103 of the Hujiahe coal mine as the case, the theoretical model was well applied and verified. The static cumulative resistance Qs (210.5 kN) which was incurred by deformation of rocks provided the basis (81.93% in the overall real-time resistance Q) of dynamic failures. However, the additional impact resistance Qd (46.43 kN) brought about by the energy release in the failure process of elastic zones triggered impact failures. As a result, under conditions that the overall real-time resistance Q (256.93 kN) exceeded the ultimate resistance [Q] (250.8 kN), the dynamic failure of supports occurred. The in situ application was implemented by taking pressure-relief measures and parameter optimizations of roadway supports, which achieved an effective prevention of rockbursts.
Journal Article
In Situ Test Study of Characteristics of Coal Mining Dynamic Load
2015
Combination of coal mining dynamic load and high static stress can easily induce such dynamic disasters as rock burst, coal and gas outburst, roof fall, and water inrush. In order to obtain the characteristic parameters of mining dynamic load and dynamic mechanism of coal and rock, the stress wave theory is applied to derive the relation of mining dynamic load strain rate and stress wave parameters. The in situ test was applied to study the stress wave propagation law of coal mine dynamic load by using the SOS microseismic monitoring system. An evaluation method for mining dynamic load strain rate was proposed, and the statistical evaluation was carried out for the range of strain rate. The research results show that the loading strain rate of mining dynamic load is in direct proportion to the seismic frequency of coal-rock mass and particle peak vibration velocity and is in inverse proportion to wave velocity. The high-frequency component damps faster than the low-frequency component in the shockwave propagating process; and the peak particle vibration velocity has a power functional relationship with the transmitting distance. The loading strain rate of mining dynamic load is generally less than class 10−1/s.
Journal Article
Study on Roof Breakage-Induced Roadway Coal Burst in an Extrathick Steeply Inclined Coal Seam
by
Wang, Sheng-chuan
,
Cao, Jin-rong
,
Mu, Zong-long
in
Acceleration
,
Acoustic emission
,
Acoustic emission testing
2019
In view of the coal burst induced by roof breakage in the steeply inclined coal seam (SICS) roadway and its mechanism, a mechanical model was established to investigate the distribution of dynamic and static stresses in the coal seam before and after the breakage of a thick hard roof. The aim of this research is to study failure laws of SICS roadways under the superposition of dynamic load induced by roof breakage and asymmetric static load. For this purpose, response characteristics including acoustic emission (AE), static stress, and acceleration were analyzed by applying different dynamic loads to different horizontal slices with a self-made similarity simulation test apparatus under combined dynamic and static loads. The theoretical model and simulation results were verified by analyzing characteristics of coal burst occurrence in the field, microseismic (MS) events, and tomographic imaging of microseismic waves. The study demonstrates the following: (1) The abutment pressure of the roof plays a dominant role in stress distribution of the coal seam slice before the breakage of the thick hard roof with the stress of the roof roadway (Rr) being obviously higher than that of the floor roadway (Rf). (2) High-energy MS events and AE events are concentrated on the roof side after the breakage of the thick hard roof, and coal bursts are more easily induced by the superposition of high dynamic and static stresses on the roof side. Coal burst in the roadway is jointly determined by dynamic and static stresses. Under the same static stress, response characteristics increase with the rise of intensity of dynamic loads. When dynamic stress is the same, coal burst easily occurs in the roadway with high static stress.
Journal Article
Influences of True Triaxial Loading-Unloading Stress Paths on Mechanical Properties and Wave Velocity of Coal Samples subject to Risk of Rock Burst
2021
To study fracture evolution and peak stress in burst risk coal samples (BRCSs) under true triaxial loading and unloading conditions, experimental and numerical research was applied to BRCSs under true triaxial stress paths entailing “x-direction displacement fixed, y-direction loading, z-direction unloading.” Both the experimental and the numerical results demonstrated that the peak stress borne by the BRCSs was not only affected by the initial stress but also had a negative exponential relationship with the ratio of the unloading rate and the loading rate (RURLR); therefore, peak stress equations of BRCSs under true triaxial loading and unloading conditions were established. The triaxial stress-time curves obtained by experiments and simulations exhibited an “elasticity-yield-destruction” phase, and the characteristics of the yield phase were determined by the RURLR. A typical BRCS was selected for velocity tomographic imaging to analyze the fracture evolution characteristics under true triaxial loading and unloading. The results showed that when the BRCS was subjected to a triaxial state of stress, the high- and low-velocity regions existed alternately due to the presence of the crack; during the elastic phase, the crack closed during loading in the previous phase was reopened upon unloading, so that the velocity of the sample decreased and a wide range of low-velocity regions could be formed; when entering the yield phase, the original crack continued to expand into a hole-through crack, leading to wider extreme values and ranges of these low- and high-velocity regions; at the breaking phase, multiple microcracks were generated around the hole-through cracks, decreasing the overall velocity, and showing point distributions characteristics of high- and low-velocity regions. Overall, many low-velocity regions with similar normal directions to the unloading direction were formed; these correlated well with macrofractures (postfailure).
Journal Article
Mechanism of Coal Bursts Induced by Horizontal Section Mining of Steeply Inclined Coal Seams and Application of Microseismic Multiparameter Monitoring in Early Warning
2020
Coal bursts occurring in steeply inclined coal seams (SICSs) are increasingly severe. To solve this problem, a mechanical model for the distribution of static stress on coal-rock masses along panels and the distribution of dynamic load induced by the breakage of thick and hard roofs with propagation distance was established. The stress characteristics after a superposition of dynamic and static loads on the roof and floor roadways (Rr and Rf) were determined. In addition, precursory information characteristics and index sensitivities of four indices for dynamic loads and the CT index for static loads based on seismic tomography were separately analyzed. The monitoring and warning indices for SICSs and flat seams were compared. The results showed that the static stress of Rr was significantly higher than that of Rf, which provided a basis for the stress-triggering coal burst behaviors. Three indices for dynamic loads and seismic tomography results exhibited remarkable precursory information and high sensitivity. However, the performance of lack of shock index is poor. The continuous anomaly and the contradiction of indices at Rr and Rf can be considered as precursory information for predicting coal bursts.
Journal Article
Mechanical and Coal Burst Breeding Mechanism of Coal Samples under True Triaxial Loading and Unloading
2019
A true triaxial loading and unloading experiment entailing “y-direction stress loading, z-direction stress unloading, and x-direction displacement fixing” of coal samples was conducted. Through analysis of the stress characteristics, fracture characteristics, and energy evolution in coal samples, the mechanical and coal burst breeding mechanisms of coal samples under true triaxial loading and unloading were revealed. The experiment found that the yield stress and peak stress of coal samples were not only affected by the initial loading and unloading of lateral stress but also had a negative exponential relationship with the ratio of the unloading rate and the loading rate (RURLR), thereby establishing the stress equation of coal samples under a true triaxial loading and unloading. There was a yield turning point in the stress-time curve of coal samples, and the difference in triaxial stress and acoustic emission before, and after, yield was significant. It was found that a high unloading rate and high initial stress are precursors to coal sample bursting. During loading and unloading, the high-energy area expanded, but its location was always fixed to within a certain area. The energy in this area was rapidly released to form a burst source when the sample was subjected to high-speed unloading. The nonbursting coal samples and the burst coal samples showed characteristic slabbing and bursting behaviours, respectively: the former corresponding to the acoustic emission energy value being two orders of magnitude lower than the latter. The research results can provide a reference for the study of mechanical behaviours and coal burst criteria in the rock surrounding a coal roadway excavation.
Journal Article
Dynamic Behavior of Fault Slip Induced by Stress Waves
2016
Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB) occurrence.
Journal Article
A Novel Experimental Technique to Simulate Shock Behaviour and Bursting Failure of Roadways
2019
Rockburst is a sudden and dynamic failure of rock that can cause serious injury to miners and damage to the underground excavations. Stress path, dynamic disturbance, and support system play important and different roles in the generation processes of rockbursts, resulting rockbursts with variety of reasons and failure modes. A test facility that was capable of simulating such factors was developed to study shock behaviour and bursting failure of roadways. The results demonstrate that the modeled roadway was in good condition and retained a shock resistance capacity after three drop loads. Until the acceleration amplitude increased to a certain level at the time of the fourth dynamic loading, sudden bursting failure of modeled roadway occurred. Many large fragments ejected from the upper and middle regions of the roadway, accompanied with loud noise. A deep pit was observed after the bursting failure. The axial of the fan-shaped pit had an angle above the vertical. In addition, shock behaviour of the modeled roadway had been changed by the anchor-net support. Significant differences appeared between the acceleration signals measured in two roadway sections with and without the anchor-net support. The acceleration magnitude of the supported roadway section was strongly reduced by the presence of the anchor-net support. Even when the unsupported roadway section underwent a sudden injection failure, the roadway with anchor-net support was in good condition. This study may eventually lead to a methodology for studying the rockbursting resistance capacity of underground roadways.
Journal Article
Microseismic Precursory Characteristics of Rock Burst Hazard in Mining Areas Near a Large Residual Coal Pillar: A Case Study from Xuzhuang Coal Mine, Xuzhou, China
2016
Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial–temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial–temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.
Journal Article