Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
3,580
result(s) for
"Douglas, David C"
Sort by:
Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator
by
McKinney, Melissa A.
,
Douglas, David C.
,
Lillie, Kate
in
Animals
,
Aquatic mammals
,
Arctic Regions
2016
In the Arctic Ocean's southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska's north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.
Journal Article
Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions
2015
Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.
Journal Article
Evaluation of Satellite Imagery for Monitoring Pacific Walruses at a Large Coastal Haulout
2021
Pacific walruses (Odobenus rosmarus divergens) are using coastal haulouts in the Chukchi Sea more often and in larger numbers to rest between foraging bouts in late summer and autumn in recent years, because climate warming has reduced availability of sea ice that historically had provided resting platforms near their preferred benthic feeding grounds. With greater numbers of walruses hauling out in large aggregations, new opportunities are presented for monitoring the population. Here we evaluate different types of satellite imagery for detecting and delineating the peripheries of walrus aggregations at a commonly used haulout near Point Lay, Alaska, in 2018–2020. We evaluated optical and radar imagery ranging in pixel resolutions from 40 m to ~1 m: specifically, optical imagery from Landsat, Sentinel-2, Planet Labs, and DigitalGlobe, and synthetic aperture radar (SAR) imagery from Sentinel-1 and TerraSAR-X. Three observers independently examined satellite images to detect walrus aggregations and digitized their peripheries using visual interpretation. We compared interpretations between observers and to high-resolution (~2 cm) ortho-corrected imagery collected by a small unoccupied aerial system (UAS). Roughly two-thirds of the time, clouds precluded clear optical views of the study area from satellite. SAR was unaffected by clouds (and darkness) and provided unambiguous signatures of walrus aggregations at the Point Lay haulout. Among imagery types with 4–10 m resolution, observers unanimously agreed on all detections of walruses, and attained an average 65% overlap (sd 12.0, n 100) in their delineations of aggregation boundaries. For imagery with ~1 m resolution, overlap agreement was higher (mean 85%, sd 3.0, n 11). We found that optical satellite sensors with moderate resolution and high revisitation rates, such as PlanetScope and Sentinel-2, demonstrated robust and repeatable qualities for monitoring walrus haulouts, but temporal gaps between observations due to clouds were common. SAR imagery also demonstrated robust capabilities for monitoring the Point Lay haulout, but more research is needed to evaluate SAR at haulouts with more complex local terrain and beach substrates.
Journal Article
Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier?
by
Tibbitts, T. Lee
,
Warnock, Nils
,
Gill, Robert E
in
Aerial locomotion
,
Animal Migration - physiology
,
Animal migration behavior
2009
Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117-11 680 km (10 153±1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008-7390 km. Flight duration ranged from 6.0 to 9.4 days (7.8±1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators.
Journal Article
Wild Bird Migration across the Qinghai-Tibetan Plateau: A Transmission Route for Highly Pathogenic H5N1
by
Collins, Bridget M.
,
Guo, Shan
,
Tang, Mingjie
in
Anatidae
,
Animal Migration - physiology
,
Animals
2011
Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus). H5N1 subsequently spread to Europe and Africa, and in following years has re-emerged in wild birds along the Central Asia flyway several times.
To better understand the potential involvement of wild birds in the spread of H5N1, we studied the movements of bar-headed geese marked with GPS satellite transmitters at Qinghai Lake in relation to virus outbreaks and disease risk factors. We discovered a previously undocumented migratory pathway between Qinghai Lake and the Lhasa Valley of Tibet where 93% of the 29 marked geese overwintered. From 2003-2009, sixteen outbreaks in poultry or wild birds were confirmed on the Qinghai-Tibet Plateau, and the majority were located within the migratory pathway of the geese. Spatial and temporal concordance between goose movements and three potential H5N1 virus sources (poultry farms, a captive bar-headed goose facility, and H5N1 outbreak locations) indicated ample opportunities existed for virus spillover and infection of migratory geese on the wintering grounds. Their potential as a vector of H5N1 was supported by rapid migration movements of some geese and genetic relatedness of H5N1 virus isolated from geese in Tibet and Qinghai Lake.
This is the first study to compare phylogenetics of the virus with spatial ecology of its host, and the combined results suggest that wild birds play a role in the spread of H5N1 in this region. However, the strength of the evidence would be improved with additional sequences from both poultry and wild birds on the Qinghai-Tibet Plateau where H5N1 has a clear stronghold.
Journal Article
Ringed seal (Pusa hispida) seasonal movements, diving, and haul‐out behavior in the Beaufort, Chukchi, and Bering Seas (2011–2017)
by
Von Duyke, Andrew L.
,
Douglas, David C.
,
Crawford, Justin A.
in
Activity patterns
,
Alaska
,
Animal behavior
2020
Continued Arctic warming and sea‐ice loss will have important implications for the conservation of ringed seals, a highly ice‐dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqiaġvik (formerly Barrow), Alaska, to monitor their movements, diving, and haul‐out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqiaġvik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide‐ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid‐summer to early fall, 12 seals made ~1‐week forays off‐shelf to the deep Arctic Basin, most reaching the retreating pack‐ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul‐out patterns were complementary, occurring mostly at night until April‐May when midday hours were preferred. Ringed seals captured in 2011—concurrent with an unusual mortality event that affected all ice‐seal species—differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes. Arctic warming and sea‐ice loss will have implications for the conservation of ice‐dependent ringed seals. A better understanding of their spatial ecology will help characterize emerging ecological trends and benefit management decisions. We present analyses of ringed seal tracking and dive data (n = 17). Activities occurring on varying temporal scales are described, as are seasonal movements, and habitat use. Finally, speculation on molting physiology and its role in energetics, habitat use, and behavior are discussed, along with speculation about two purported ringed seal ecotypes.
Journal Article
Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry
by
Perry, William M.
,
Douglas, David C.
,
Gaidet, Nicolas
in
Africa
,
Applied ecology
,
Aquatic birds
2010
1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006-2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5-15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the assumption that free-living wildfowl will respond analogously to captive, experimentally-infected birds, and that asymptomatic infection will not alter their movement abilities. Our approach of combining experimental exposure data and telemetry information provides an analytical framework for quantifying the risk of spread of avian-borne diseases.
Journal Article
Survival and abundance of polar bears in Alaska’s Beaufort Sea, 2001–2016
by
Durner, George M.
,
Simac, Kristin S.
,
Douglas, David C.
in
Abundance
,
Aircraft
,
Aquatic mammals
2021
The Arctic Ocean is undergoing rapid transformation toward a seasonally ice‐free ecosystem. As ice‐adapted apex predators, polar bears (Ursus maritimus) are challenged to cope with ongoing habitat degradation and changes in their prey base driven by food‐web response to climate warming. Knowledge of polar bear response to environmental change is necessary to understand ecosystem dynamics and inform conservation decisions. In the southern Beaufort Sea (SBS) of Alaska and western Canada, sea ice extent has declined since satellite observations began in 1979 and available evidence suggests that the carrying capacity of the SBS for polar bears has trended lower for nearly two decades. In this study, we investigated the population dynamics of polar bears in Alaska's SBS from 2001 to 2016 using a multistate Cormack–Jolly–Seber mark–recapture model. States were defined as geographic regions, and we used location data from mark–recapture observations and satellite‐telemetered bears to model transitions between states and thereby explain heterogeneity in recapture probabilities. Our results corroborate prior findings that the SBS subpopulation experienced low survival from 2003 to 2006. Survival improved modestly from 2006 to 2008 and afterward rebounded to comparatively high levels for the remainder of the study, except in 2012. Abundance moved in concert with survival throughout the study period, declining substantially from 2003 and 2006 and afterward fluctuating with lower variation around an average of 565 bears (95% Bayesian credible interval [340, 920]) through 2015. Even though abundance was comparatively stable and without sustained trend from 2006 to 2015, polar bears in the Alaska SBS were less abundant over that period than at any time since passage of the U.S. Marine Mammal Protection Act. The potential for recovery is likely limited by the degree of habitat degradation the subpopulation has experienced, and future reductions in carrying capacity are expected given current projections for continued climate warming. As ice‐adapted apex predators, polar bears (Ursus maritimus) are challenged to cope with the ongoing habitat degradation and changes in their prey base driven by food web response to climate warming. We investigated the population dynamics of polar bears in Alaska's southern Beaufort Sea (SBS) using a multistate CJS mark–recapture model. Abundance declined during several consecutive years of poor survival and afterward fluctuated in concert with survival but without sustained trend, averaging 565 bears from 2006 to 2015, the lowest level since passage of the US Marine Mammal Protection Act.
Journal Article
Eco-Virological Approach for Assessing the Role of Wild Birds in the Spread of Avian Influenza H5N1 along the Central Asian Flyway
2012
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.
Journal Article