Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Douvris, Chris"
Sort by:
Syntheses and Characterization of the First Cycloheptatrienyl Transition-Metal Complexes with a M-CF3 Bond
The organometallic chemistry of metal complexes with organocyclic ligands of higher than five hapticity is much more lacking than the chemistry of metal complexes with η5-cyclopentadienyl ligands, which has been explored in considerable depth, resulting in novel advances. The main reason for this is stability. In particular, reports indicate that (η7-C7H7)MLn complexes are considerably less stable than analogous (η5-C5H5)MLn. In perfluoroalkyl metal chemistry, there is currently no reported (η7-C7H7)MLn derivative, whereas a number of alkylated ones are known and important conclusions have been drawn about their stability. Responding to this void, and using Morrison’s trifluoromethylating reagent, the present study reports the synthesis and characterization of the first cycloheptatrienyl molybdenum complexes bearing the trifluoromethyl moiety; (η7-C7H7)Mo(CO)2CF3 (I), and (η7-C7H7)Mo(CO)(PMe3)CF3 (II) and discusses their low thermal instability.
Mercury Methylation Potentials in Sediments of an Ancient Cypress Wetland Using Species-Specific Isotope Dilution GC-ICP-MS
Wetlands are of a considerable environmental value as they provide food and habitat for plants and animals. Several important chemical transformations take place in wetland media, including the conversion of inorganic mercury (Hg) to monomethylmercury (MeHg), a toxic compound with a strong tendency for bioconcentration. Considering the fact that wetlands are hotspots for Hg methylation, we investigated, for the first time, Hg methylation and demethylation rates in an old growth cypress wetland at Sky Lake in the Mississippi Delta. The Sky Lake ecosystem undergoes large-scale water level fluctuations causing alternating periods of oxic and anoxic conditions in the sediment. These oscillating redox conditions, in turn, can influence the transformation, speciation, and bioavailability of Hg. In the present study, sediment cores from the wetland and Sky Lake itself were spiked with enriched stable isotope tracers of inorganic Hg and MeHg and allowed to incubate (in-situ) before freezing, sectioning, and analysis. Methylation rates (day−1) ranged from 0.012 ± 0.003 to 0.054 ± 0.019, with the lowest rate in the winter and the highest in the summer. Demethylation rates were about two orders of magnitude higher, and also greater in the warmer seasons (e.g., 1.84 ± 0.78 and 4.63 ± 0.51 for wetland sediment in the winter and summer, respectively). Methylation rates were generally higher in the open water sediment compared to wetland sediment, with the latter shaded and cooler. Both methylation (r = 0.76, p = 0.034) and demethylation (0.97, p = 0.016) rates (day−1) were positively correlated with temperature, but not with most other water quality parameters. MeHg concentration in the water was correlated with pH (r = 0.80, p < 0.05), but methylation rates were only marginally correlated (r = 0.71). Environmental factors driving microbial production of MeHg in the system include warm temperatures, high levels of labile natural organic matter, and to a lesser extent the relatively low pH and the residence time of the water. This study also provides baseline data that can be used to quantify the impacts of modifying the natural flow of water to the system on Hg methylation and demethylation rates.
Synthesis, Characterization, and X-ray Crystallography, of the First Cyclohexadienyl Trifluoromethyl Metal Complex (η5-C6H7)Fe(CO)2CF3
Fluorochemistry is a field of tremendous developments and advances in several areas of science including materials, pharmaceuticals and agriculture. This makes the design and synthesis of fluorine-containing substances highly desirable research targets. The sub-area of synthetic perfluorinated chemistry proportionately attracts widespread interest by applying to all areas of chemistry including organic and inorganic. Particularly, the latter is much underdeveloped as metal complexes with perfluoroalkyl moieties are scarce, with the vast majority of perfluorinated analogs, of long known, halo and alkylated derivatives never having been synthesized. Focusing on the chemistry of trifluoromethyl group, which is the most important in the class of perfluoroalkyls, we set out to explore the possibility of synthesizing and completely characterizing a cyclohexadienyl metal complex. Upon utilizing a number of trifluorometylating reagents, we only arrived at an efficient preparation by the use of Morrison’s trifluormethylating reagent. As a result, the new, air- and moisture-sensitive complex (η5-C6H7)Fe(CO)2CF3, was prepared in 71% yield, using a nucleophilic iodo-for-trifluoromethyl substitution, and was completely characterized including by X-ray crystallography.
An Environmentally Compatible and Less Costly (Greener) Microwave Digestion Method of Bone Samples Using Dilute Nitric Acid for Analysis by ICP-MS
An environmentally compatible and less costly (greener) analytical method for the digestion of bone meal samples using microwave-assisted dilute nitric acid (HNO3) was developed and optimized. The method, employing a mixture of 1 mL concentrated HNO3 and 4 mL of deionized water, offered a comparable performance to the conventional method using 5 mL of concentrated HNO3. The accuracy of the method was validated by using certified reference material NIST 1486 (Bone Meal); percentage recoveries were within ±15% for all eight certified elements. Statistical analysis revealed no significant differences (p > 0.05) in percentage recoveries between the green and conventional methods for all elements except calcium. The greenness of the developed method was evaluated by using the analytical Eco-Scale, achieving a score of 87, categorizing it as an “excellent green analysis” method. This research highlights the potential for adopting greener practices in trace element analysis that reduce the environmental impact and safety risks associated with concentrated acids.
Trace Metals in Cannabis Seized by Law Enforcement in Ghana and Multivariate Analysis to Distinguish among Different Cannabis Farms
For hundreds of years, cannabis has been one of the most known cultivated plants due to its variety of uses, which include as a psychoactive drug, as well as for medicinal activity. Although prohibiting cannabis products, the countries of the African continent are the largest producers of cannabis in the world; a fact that makes the trafficking of cannabis-based illicit drugs a high priority for local law enforcement authorities. The latter are exceedingly interested in the use of chemical analyses for facilitating quantification, identification, and tracing of the origin of seized cannabis samples. Targeting these goals, and focusing on the country of Ghana, the present study used inductively coupled plasma mass spectrometry (ICP-MS) for the determination of 12 elements (Pb, Cu, Ca, Mg, Mn, Zn, Cd, As, Hg, Fe, Na, and K) in cannabis seized by Ghana’s law enforcement authorities and soils of cannabis farms. Furthermore, multivariate analysis was applied to distinguish among different cannabis farms and match them with the samples. As a result, 22 seized cannabis samples and 12 other cannabis samples with their respective soils were analyzed to reveal considerable As and Pb concentrations. As and Pb levels in cannabis were found up to 242 ppb for As and 854 ppb for Pb. Multivariate analysis was applied for separating different cannabis farms and seized samples based on elemental analysis, evidently linking the seized samples with two Ghana regions.
A Fast, Straightforward and Inexpensive Method for the Authentication of Baijiu Spirit Samples by Fluorescence Spectroscopy
The Chinese spirit baijiu is currently the world’s bestselling spirit, with more than ten billion liters sold in 2018. This is a figure that puts its sales higher than whiskey, vodka, gin, and tequila combined. The multitude of baijiu varieties available in the market differ in several ways ranging from aging to the traditional artisanship involved in producing the final spirit to several other features, including the rarity of the bottle. A result of these differences is a wide distribution of prices for the various baijiu products. Consequently, a single bottle of baijiu can cost anywhere from a few dollars, up to thousands of US dollars. The price differences among the various baijiu spirits necessitate the existence of reliable scientific methods that can efficiently differentiate and authenticate the qualities of baijiu spirits. In addition, the existence of such methods facilitates the prevention of counterfeit sales of the final product. Considering this, we introduce an analytical chemistry method that distinguishes amongst different baijiu spirits based on fluorescence spectroscopy. Its attributes include the low cost and convenience that allows analysis either before or while the spirit is in the market. Our work herein focuses on the analysis of thirty different varieties of baijiu spirits from six different distilleries from East Asia and North America by fluorescence emission spectroscopy, which is associated to the price of the product. For the analysis, we employed a HORIBA FLUOROLOG 3 (HORIBA—Jobin Yvon) spectrometer. Major advantages of this method include the low cost, as no consumables except a quartz reusable cuvette are required, the minimal waste, and finally the quick processing of data.
Synthesis, Characterization, and X-ray Crystallography, of the First Cyclohexadienyl Trifluoromethyl Metal Complex sub.2CFsub.3
Fluorochemistry is a field of tremendous developments and advances in several areas of science including materials, pharmaceuticals and agriculture. This makes the design and synthesis of fluorine-containing substances highly desirable research targets. The sub-area of synthetic perfluorinated chemistry proportionately attracts widespread interest by applying to all areas of chemistry including organic and inorganic. Particularly, the latter is much underdeveloped as metal complexes with perfluoroalkyl moieties are scarce, with the vast majority of perfluorinated analogs, of long known, halo and alkylated derivatives never having been synthesized. Focusing on the chemistry of trifluoromethyl group, which is the most important in the class of perfluoroalkyls, we set out to explore the possibility of synthesizing and completely characterizing a cyclohexadienyl metal complex. Upon utilizing a number of trifluorometylating reagents, we only arrived at an efficient preparation by the use of Morrison’s trifluormethylating reagent. As a result, the new, air- and moisture-sensitive complex (η[sup.5]-C[sub.6]H[sub.7])Fe(CO)[sub.2]CF[sub.3], was prepared in 71% yield, using a nucleophilic iodo-for-trifluoromethyl substitution, and was completely characterized including by X-ray crystallography.