Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
66 result(s) for "Druilhe, Pierre"
Sort by:
Protection against Malaria by MSP3 Candidate Vaccine
Malaria is a leading cause of illness and death in the developing world. Thus, the need for an effective vaccine is great. In this phase 1 trial in Burkina Faso, a merozoite surface protein–based vaccine showed some evidence of protection against clinical malaria. To the Editor: In 2007, we conducted a double-blind, randomized, phase 1b clinical trial (ClinicalTrials.gov number, NCT00452088) using the merozoite surface protein 3 (MSP3) vaccine in a malaria-endemic area. A total of 45 children who were 12 to 24 months of age were randomly assigned in a 1:1:1 ratio to receive three doses (on days 0, 28, and 56) of MSP3 at a dose of 15 μg, MSP3 at a dose of 30 μg, or hepatitis B vaccine at a dose of 10 μg. Details of ethical approval (which included approval by the national ethics committee of Burkina Faso and . . .
Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study
Substantial reductions in malaria have been reported in several African countries after distribution of insecticide-treated bednets and the use of artemisinin-based combination therapies (ACTs). Our aim was to assess the effect of these policies on malaria morbidity, mosquito populations, and asymptomatic infections in a west African rural population. We did a longitudinal study of inhabitants of Dielmo village, Senegal, between January, 2007, and December, 2010. We monitored the inhabitants for fever during this period and we treated malaria attacks with artesunate plus amodiaquine. In July, 2008, we offered longlasting insecticide (deltamethrin)-treated nets (LLINs) to all villagers. We did monthly night collections of mosquitoes during the whole study period, and we assessed asymptomatic carriage from cross-sectional surveys. Our statistical analyses were by negative binomial regression, logistic regression, and binomial or Fisher exact test. There were 464 clinical malaria attacks attributable to Plasmodium falciparum during 17 858 person-months of follow-up. The incidence density of malaria attacks averaged 5·45 (95% CI 4·90–6·05) per 100 person-months between January, 2007, and July, 2008, before the distribution of LLINs. Incidence density decreased to 0·41 (0·29–0·55) between August, 2008, and August, 2010, but increased back to 4·57 (3·54–5·82) between September and December, 2010—ie, 27–30 months after the distribution of LLINs. The rebound of malaria attacks were highest in adults and children aged 10 years or older: 45 (63%) of 71 malaria attacks recorded in 2010 compared with 126 (33%) of 384 in 2007 and 2008 (p<0·0001). 37% of Anopheles gambiae mosquitoes were resistant to deltamethrin in 2010, and the prevalence of the Leu1014Phe kdr resistance mutation increased from 8% in 2007 to 48% in 2010 (p=0·0009). Increasing pyrethroid resistance of A gambiae and increasing susceptibility of older children and adults, probably due to decreasing immunity, caused the rebound and age shift of malaria morbidity. Strategies to address the problem of insecticide resistance and to mitigate its effects must be urgently defined and implemented. Institut de Recherche pour le Développement and the Pasteur Institute of Dakar.
The rise and fall of malaria in a west African rural community, Dielmo, Senegal, from 1990 to 2012: a 22 year longitudinal study
A better understanding of the effect of malaria control interventions on vector and parasite populations, acquired immunity, and burden of the disease is needed to guide strategies to eliminate malaria from highly endemic areas. We monitored and analysed the changes in malaria epidemiology in a village community in Senegal, west Africa, over 22 years. Between 1990 and 2012, we did a prospective longitudinal study of the inhabitants of Dielmo, Senegal, to identify all episodes of fever and investigate the relation between malaria host, vector, and parasite. Our study included daily medical surveillance with systematic parasite detection in individuals with fever. We measured parasite prevalence four times a year with cross-sectional surveys. We monitored malaria transmission monthly with night collection of mosquitoes. Malaria treatment changed over the years, from quinine (1990–94), to chloroquine (1995–2003), amodiaquine plus sulfadoxine-pyrimethamine (2003–06), and finally artesunate plus amodiaquine (2006–12). Insecticide-treated nets (ITNs) were introduced in 2008. We monitored 776 villagers aged 0–101 years for 2 378 150 person-days of follow-up. Entomological inoculation rate ranged from 142·5 infected bites per person per year in 1990 to 482·6 in 2000, and 7·6 in 2012. Parasite prevalence in children declined from 87% in 1990 to 0·3 % in 2012. In adults, it declined from 58% to 0·3%. We recorded 23 546 fever episodes during the study, including 8243 clinical attacks caused by Plasmodium falciparum, 290 by Plasmodium malariae, and 219 by Plasmodium ovale. Three deaths were directly attributable to malaria, and two to severe adverse events of antimalarial drugs. The incidence of malaria attacks ranged from 1·50 attacks per person-year in 1990 to 2·63 in 2000, and to only 0·046 in 2012. The greatest changes were associated with the replacement of chloroquine and the introduction of ITNs. Malaria control policies combining prompt treatment of clinical attacks and deployment of ITNs can nearly eliminate parasite carriage and greatly reduce the burden of malaria in populations exposed to intense perennial malaria transmission. The choice of drugs seems crucial. Rapid decline of clinical immunity allows rapid detection and treatment of novel infections and thus has a key role in sustaining effectiveness of combining artemisinin-based combination therapy and ITNs despite increasing pyrethroid resistance. Pasteur Institutes of Dakar and Paris, Institut de Recherche pour le Développement, and French Ministry of Cooperation.
A Phase 1 Trial of MSP2-C1, a Blood-Stage Malaria Vaccine Containing 2 Isoforms of MSP2 Formulated with Montanide® ISA 720
In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. The trial was designed to include three dose cohorts (10, 40, and 80 µg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 µg dose; no subjects received the 80 µg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 µg and 40 µg dose cohorts, with antibody levels by ELISA higher in the 40 µg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth. As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further clinical development of MSP2-C1 will require formulation of MSP2 in an alternative adjuvant. Australian New Zealand Clinical Trials Registry 12607000552482.
High-level artemisinin-resistance with quinine co-resistance emerges in P. falciparum malaria under in vivo artesunate pressure
Background Humanity has become largely dependent on artemisinin derivatives for both the treatment and control of malaria, with few alternatives available. A Plasmodium falciparum phenotype with delayed parasite clearance during artemisinin-based combination therapy has established in Southeast Asia, and is emerging elsewhere. Therefore, we must know how fast, and by how much, artemisinin-resistance can strengthen. Methods P. falciparum was subjected to discontinuous in vivo artemisinin drug pressure by capitalizing on a novel model that allows for long-lasting, high-parasite loads. Intravenous artesunate was administered, using either single flash-doses or a 2-day regimen, to P. falciparum -infected humanized NOD/SCID IL-2Rγ −/− immunocompromised mice, with progressive dose increments as parasites recovered. The parasite’s response to artemisinins and other available anti-malarial compounds was characterized in vivo and in vitro. Results Artemisinin resistance evolved very rapidly up to extreme, near-lethal doses of artesunate (240 mg/kg), an increase of > 3000-fold in the effective in vivo dose, far above resistance levels reported from the field. Artemisinin resistance selection was reproducible, occurring in 80% and 41% of mice treated with flash-dose and 2-day regimens, respectively, and the resistance phenotype was stable. Measuring in vitro sensitivity proved inappropriate as an early marker of resistance, as IC 50 remained stable despite in vivo resistance up to 30 mg/kg (ART-S: 10.7 nM (95% CI 10.2–11.2) vs. ART-R 30 : 11.5 nM (6.6–16.9), F = 0.525, p  = 0.47). However, when in vivo resistance strengthened further, IC 50 increased 10-fold (ART-R 240 100.3 nM (92.9–118.4), F = 304.8, p  < 0.0001), reaching a level much higher than ever seen in clinical samples. Artemisinin resistance in this African P. falciparum strain was not associated with mutations in kelch-13 , casting doubt over the universality of this genetic marker for resistance screening. Remarkably, despite exclusive exposure to artesunate, full resistance to quinine, the only other drug sufficiently fast-acting to deal with severe malaria, evolved independently in two parasite lines exposed to different artesunate regimens in vivo, and was confirmed in vitro. Conclusion P. falciparum has the potential to evolve extreme artemisinin resistance and more complex patterns of multidrug resistance than anticipated. If resistance in the field continues to advance along this trajectory, we will be left with a limited choice of suboptimal treatments for acute malaria, and no satisfactory option for severe malaria.
Long-Term Clinical Protection from Falciparum Malaria Is Strongly Associated with IgG3 Antibodies to Merozoite Surface Protein 3
Surrogate markers of protective immunity to malaria in humans are needed to rationalize malaria vaccine discovery and development. In an effort to identify such markers, and thereby provide a clue to the complex equation malaria vaccine development is facing, we investigated the relationship between protection acquired through exposure in the field with naturally occurring immune responses (i.e., induced by the parasite) to molecules that are considered as valuable vaccine candidates. We analyzed, under comparative conditions, the antibody responses of each of six isotypes to five leading malaria vaccine candidates in relation to protection acquired by exposure to natural challenges in 217 of the 247 inhabitants of the African village of Dielmo, Senegal (96 children and 121 older adolescents and adults). The status of susceptibility or resistance to malaria was determined by active case detection performed daily by medical doctors over 6 y from a unique follow-up study of this village. Of the 30 immune responses measured, only one, antibodies of the IgG3 isotype directed to merozoite surface protein 3 (MSP3), was strongly associated with clinical protection against malaria in all age groups, i.e., independently of age. This immunological parameter had a higher statistical significance than the sickle cell trait, the strongest factor of protection known against Plasmodium falciparum. A single determination of antibody was significantly associated with the clinical outcome over six consecutive years in children submitted to massive natural parasite challenges by mosquitoes (over three parasite inoculations per week). Finally, the target epitopes of these antibodies were found to be fully conserved. Since anti-MSP3 IgG3 antibodies can naturally develop along with protection against P. falciparum infection in young children, our results provide the encouraging indication that these antibodies should be possible to elicit by vaccination early in life. Since these antibodies have been found to achieve parasite killing under in vitro and in vivo conditions, and since they can be readily elicited by immunisation in naïve volunteers, our immunoepidemiological findings support the further development of MSP3-based vaccine formulations.
Further Improvements of the P. falciparum Humanized Mouse Model
It has been shown previously that it is possible to obtain growth of Plasmodium falciparum in human erythrocytes grafted in mice lacking adaptive immune responses by controlling, to a certain extent, innate defences with liposomes containing clodronate (clo-lip). However, the reproducibility of those models is limited, with only a proportion of animals supporting longstanding parasitemia, due to strong inflammation induced by P. falciparum. Optimisation of the model is much needed for the study of new anti-malarial drugs, drug combinations, and candidate vaccines. We investigated the possibility of improving previous models by employing the intravenous route (IV) for delivery of both human erythrocytes (huRBC) and P. falciparum, instead of the intraperitoneal route (IP), by testing various immunosuppressive drugs that might help to control innate mouse defences, and by exploring the potential benefits of using immunodeficient mice with additional genetic defects, such as those with IL-2Rγ deficiency (NSG mice). We demonstrate here the role of aging, of inosine and of the IL-2 receptor γ mutation in controlling P. falciparum induced inflammation. IV delivery of huRBC and P. falciparum in clo-lip treated NSG mice led to successful infection in 100% of inoculated mice, rapid rise of parasitemia to high levels (up to 40%), long-lasting parasitemia, and consistent results from mouse-to-mouse. Characteristics were closer to human infection than in previous models, with evidence of synchronisation, partial sequestration, and receptivity to various P. falciparum strains without preliminary adaptation. However, results show that a major IL-12p70 inflammatory response remains prevalent. The combination of the NSG mouse, clodronate loaded liposomes, and IV delivery of huRBC has produced a reliable and more relevant model that better meets the needs of Malaria research.
Protective Epitopes of the Plasmodium falciparum SERA5 Malaria Vaccine Reside in Intrinsically Unstructured N-Terminal Repetitive Sequences
The malaria vaccine candidate antigen, SE36, is based on the N-terminal 47 kDa domain of Plasmodium falciparum serine repeat antigen 5 (SERA5). In epidemiological studies, we have previously shown the inhibitory effects of SE36 specific antibodies on in vitro parasite growth and the negative correlation between antibody level and malaria symptoms. A phase 1 b trial of the BK-SE36 vaccine in Uganda elicited 72% protective efficacy against symptomatic malaria in children aged 6-20 years during the follow-up period 130-365 days post-second vaccination. Here, we performed epitope mapping with synthetic peptides covering the whole sequence of SE36 to identify and map dominant epitopes in Ugandan adult serum presumed to have clinical immunity to P. falciparum malaria. High titer sera from the Ugandan adults predominantly reacted with peptides corresponding to two successive N-terminal regions of SERA5 containing octamer repeats and serine rich sequences, regions of SERA5 that were previously reported to have limited polymorphism. Affinity purified antibodies specifically recognizing the octamer repeats and serine rich sequences exhibited a high antibody-dependent cellular inhibition (ADCI) activity that inhibited parasite growth. Furthermore, protein structure predictions and structural analysis of SE36 using spectroscopic methods indicated that N-terminal regions possessing inhibitory epitopes are intrinsically unstructured. Collectively, these results suggest that strict tertiary structure of SE36 epitopes is not required to elicit protective antibodies in naturally immune Ugandan adults.
Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development
Rolling back malaria is possible. Tools are available but they are not used. Several countries deploy, as their national malaria control treatment policy, drugs that are no longer effective. New and innovative methods of vector control, diagnosis, and treatment should be developed, and work towards development of new drugs and a vaccine should receive much greater support. But the pressing need, in the face of increasing global mortality and general lack of progress in malaria control, is research into the best methods of deploying and using existing approaches, particularly insecticidetreated mosquito nets, rapid methods of diagnosis, and artemisinin-based combination treatments. Evidence on these approaches should provide national governments and international donors with the costbenefit information that would justify much-needed increases in global support for appropriate and effective malaria control.
Pre-Clinical Assessment of Novel Multivalent MSP3 Malaria Vaccine Constructs
MSP3 has been shown to induce protection against malaria in African children. The characterization of a family of Plasmodium falciparum merozoite surface protein 3 (MSP3) antigens sharing a similar structural organization, simultaneously expressed on the merozoite surface and targeted by a cross-reactive network of protective antibodies, is intriguing and offers new perspectives for the development of subunit vaccines against malaria. Eight recombinant polyproteins containing carefully selected regions of this family covalently linked in different combinations were all efficiently produced in Escherichia coli. The polyproteins consisted of one monovalent, one bivalent, one trivalent, two tetravalents, one hexavalent construct, and two tetravalents incorporating coiled-coil repeats regions from LSA3 and p27 vaccine candidates. All eight polyproteins induced a strong and homogeneous antibody response in mice of three distinct genotypes, with a dominance of cytophilic IgG subclasses, lasting up to six months after the last immunization. Vaccine-induced antibodies exerted a strong monocyte-mediated in vitro inhibition of P. falciparum growth. Naturally acquired antibodies from individuals living in an endemic area of Senegal recognized the polyproteins with a reactivity mainly constituted of cytophilic IgG subclasses. Combination of genetically conserved and antigenically related MSP3 proteins provides promising subunit vaccine constructs, with improved features as compared to the first generation construct employed in clinical trials (MSP3-LSP). These multivalent MSP3 vaccine constructs expand the epitope display of MSP3 family proteins, and lead to the efficient induction of a wider range of antibody subclasses, even in genetically different mice. These findings are promising for future immunization of genetically diverse human populations.