Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Dryomov, Stanislav"
Sort by:
Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia
by
Sukernik, Rem I.
,
Nazhmidenova, Azhar M.
,
Shalaurova, Sofia A.
in
Anthropological research
,
Biological diversity
,
Biology and life sciences
2021
The Central Siberian Plateau was the last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through a comprehensive dataset of mitochondrial DNA (mtDNA) genomes retained in the remnats of earlier (“Old”) Siberians, primarily the Ket, Tofalar, and Todzhi, we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia (best represented by the Yukaghir) over the last 10,000 years. We generated 218 new complete mtDNA sequences and placed them into compound phylogenies with 7 newly obtained and 70 published ancient mitochondrial genomes. We have considerably extended the mtDNA sequence diversity (at the entire mtDNA genome level) of autochthonous Siberians, which remain poorly sampled, and these new data may have a broad impact on the study of human migration. We compared present-day mtDNA diversity in these groups with complete mitochondrial genomes from ancient samples from the region and placed the samples into combined genealogical trees. The resulting components were used to clarify the origins and expansion history of mtDNA lineages that evolved in the refugia of south-central Siberia and beyond, as well as multiple phases of connection between this region and distant parts of Eurasia.
Journal Article
Genetic legacy of cultures indigenous to the Northeast Asian coast in mitochondrial genomes of nearly extinct maritime tribes
by
Nazhmidenova, Azhar M
,
Morozov, Igor V
,
Dryomov, Stanislav V
in
20th century
,
Coastal zone
,
Coasts
2020
Background We have described the diversity of complete mtDNA sequences from ‘relic’ groups of the Russian Far East, primarily the Nivkhi (who speak a language isolate with no clear relatedness to any others) and Oroki of Sakhalin, as well as the sedentary Koryak from Kamchatka and the Udegey of Primorye. Previous studies have shown that most of their traditional territory was dramatically reshaped by the expansion of Tungusic-speaking groups. Results Overall, 285 complete mitochondrial sequences were selected for phylogenetic analyses of published, revised and new mitogenomes. To highlight the likely role of Neolithic expansions in shaping the phylogeographical landscape of the Russian Far East, we focus on the major East Eurasian maternal lineages (Y1a, G1b, D4m2, D4e5, M7a2, and N9b) that are restricted to the coastal area. To obtain more insight into autochthonous populations, we removed from the phylogeographic analysis the G2a, G3a2, M8a1, M9a1, and C4b1 lineages, also found within our samples, likely resulting from admixture between the expanding proto-Tungus and the indigenous Paleoasiatic groups with whom they assimilated. Phylogenetic analysis reveals that unlike the relatively diverse lineage spectrum observed in the Amur estuary and northwestern Sakhalin, the present-day subpopulation on the northeastern coast of the island is relatively homogenous: a sole Y1a sublineage, conspicuous for its nodal mutation at m.16189 T > C!, includes different haplotypes. Sharing of the Y1a-m.16189 T > C! sublineages and haplotypes among the Nivkhi, Ulchi and sedentary Koryak is also evident. Aside from Y1a, the entire tree approach expands our understanding of the evolutionary history of haplogroups G1, D4m, N9b, and M7a2. Specifically, we identified the novel haplogroup N9b1 in Primorye, which implies a link between a component of the Udegey ancestry and the Hokkaido Jomon. Conclusions Through a comprehensive dataset of mitochondrial genomes retained in autochthonous populations along the coast between Primorye and the Bering Strait, we considerably extended the sequence diversity of these populations to provide new features based on the number and timing of founding lineages. We emphasize the value of integrating genealogical information with genetic data for reconstructing the population history of indigenous groups dramatically impacted by twentieth century resettlement and social upheavals.
Journal Article
Mitochondrial genome diversity at the Bering Strait area highlights prehistoric human migrations from Siberia to northern North America
by
Starikovskaya, Elena B
,
Tabarev, Andrei V
,
Sukernik, Rem I
in
Alaska
,
Cellular biology
,
Coasts
2015
The patterns of prehistoric migrations across the Bering Land Bridge are far from being completely understood: there still exists a significant gap in our knowledge of the population history of former Beringia. Here, through comprehensive survey of mitochondrial DNA genomes retained in 'relic' populations, the Maritime Chukchi, Siberian Eskimos, and Commander Aleuts, we explore genetic contribution of prehistoric Siberians/Asians to northwestern Native Americans. Overall, 201 complete mitochondrial sequences (52 new and 149 published) were selected in the reconstruction of trees encompassing mtDNA lineages that are restricted to Coastal Chukotka and Alaska, the Canadian Arctic, Greenland, and the Aleutian chain. Phylogeography of the resulting mtDNA genomes (mitogenomes) considerably extends the range and intrinsic diversity of haplogroups (eg, A2a, A2b, D2a, and D4b1a2a1) that emerged and diversified in postglacial central Beringia, defining independent origins of Neo-Eskimos versus Paleo-Eskimos, Aleuts, and Tlingit (Na-Dene). Specifically, Neo-Eskimos, ancestral to modern Inuit, not only appear to be of the High Arctic origin but also to harbor Altai/Sayan-related ancestry. The occurrence of the haplogroup D2a1b haplotypes in Chukotka (Sireniki) introduces the possibility that the traces of Paleo-Eskimos have not been fully erased by spread of the Neo-Eskimos or their descendants. Our findings are consistent with the recurrent gene flow model of multiple streams of expansions to northern North America from northeastern Eurasia in late Pleistocene-early Holocene.
Journal Article
The Simons Genome Diversity Project: 300 genomes from 142 diverse populations
by
Moreno-Estrada, Andres
,
Mahley, Robert
,
de Knijff, Peter
in
631/208
,
631/208/726/649
,
Animals
2016
Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Deep whole-genome sequencing of 300 individuals from 142 diverse populations provides insights into key population genetic parameters, shows that all modern human ancestry outside of Africa including in Australasians is consistent with descending from a single founding population, and suggests a higher rate of accumulation of mutations in non-Africans compared to Africans since divergence.
The DNA of early human migrations
Three international collaborations reporting in this issue of
Nature
describe 787 high-quality genomes from individuals from geographically diverse populations. David Reich and colleagues analysed whole-genome sequences of 300 individuals from 142 populations. Their findings include an accelerated estimated rate of accumulation of mutations in non-Africans compared to Africans since divergence, and that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans but from the same source as that of other non-Africans. Eske Willerlsev and colleagues obtained whole-genome data for 83 Aboriginal Australians and 25 Papuans from the New Guinea Highlands. They estimate that Aboriginal Australians and Papuans diverged from Eurasian populations 51,000–72,000 years ago, following a single out-of-Africa dispersal. Luca Pagani
et al
. report on a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations. Their analyses support the model by which all non-African populations derive most of their genetic ancestry from a single recent migration out of Africa, although a Papuan contribution suggests a trace of an earlier human expansion.
Journal Article
Genome-wide patterns of selection in 230 ancient Eurasians
2015
Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300
bc,
including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe’s first farmers. We also report a transect of the steppe region in Samara between 5600 and 300
bc
, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.
The first genome-wide scan for selection using ancient DNA, based on data from 230 West Eurasians dating between to 6500 and 300 bc and including new data from 163 individuals among which are 26 Neolithic Anatolians, provides a direct view of selection on loci associated with diet, pigmentation and immunity.
Selection pressures deduced from ancient DNA
This study uses ancient DNA as a window on a crucial period of human evolution — the arrival of farming in Europe around 8,500 years ago. Genome-wide scanning data was obtained from 230 West Eurasians from between 6500 BC and 300 BC, including samples from 26 Anatolian Neolithic individuals, representing the first genome-wide ancient DNA from the eastern Mediterranean. The authors find evidence of selection on loci associated with diet, pigmentation and immunity. The strongest signal of selection is at the allele responsible for lactase persistence, supporting the view that an appreciable frequency of lactase persistence in Europe only dates to the past four thousand years.
Journal Article
Global diversity, population stratification, and selection of human copy-number variation
by
Jorde, Lynn B.
,
Nelson, Bradley J.
,
Huddleston, John
in
Animals
,
Black People - classification
,
Black People - genetics
2015
Duplications and deletions can lead to variation in copy number for genes and genomic loci among humans. Such variants can reveal evolutionary patterns and have implications for human health. Sudmant et al. examined copy-number variation across 236 individual genomes from 125 human populations. Deletions were under more selection, whereas duplications showed more population-specific structure. Interestingly, Oceanic populations retain large duplications postulated to have originated in an ancient Denisovan lineage. Science , this issue 10.1126/science.aab3761 Copy-number variation reveals how selection affects the human genome across the globe. In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide–variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.
Journal Article
Mitochondrial DNA Variation of Leber’s Hereditary Optic Neuropathy in Western Siberia
2019
Our data first represent the variety of Leber’s hereditary optic neuropathy (LHON) mutations in Western Siberia. LHON is a disorder caused by pathogenic mutations in the mitochondrial DNA (mtDNA), inherited maternally and presents mainly in young adults, predominantly males. Clinically, LHON manifests itself as painless central vision loss, resulting in early onset of disability. The epidemiology of LHON has not been fully investigated yet. In this study, we report 44 genetically unrelated families with LHON manifestation. We performed whole mtDNA genome sequencing and provided genealogical and molecular genetic data on mutations and haplogroup background of LHON patients. Known “primary” pathogenic mtDNA mutations (MITOMAP) were found in 32 families: m.11778G>A represents 53.10% (17/32), m.3460G>A—21.90% (7/32), m.14484T>C–18.75% (6/32), and rare m.10663T>C and m.3635G>A represent 6.25% (2/32). We describe potentially pathogenic m.4659G>A in one subject without known pathogenic mutations, and potentially pathogenic m.6261G>A, m.8412T>C, m.8551T>C, m.9444C>T, m.9921G>A, and m.15077G>A in families with known pathogenic mutations confirmed. We suppose these mutations could contribute to the pathogenesis of optic neuropathy development. Our results indicate that haplogroup affiliation and mutational spectrum of the Western Siberian LHON cohort substantially deviate from those of European populations.
Journal Article
Mitochondrial DNA variation of Leber's Hereditary Optic Neuropathy (LHON) in Western Siberia
by
Starikovskaya, Elena B
,
Sukernik, Rem I
,
Bychkov, Igor Y
in
Epidemiology
,
Genomes
,
Hereditary diseases
2019
Leber's hereditary optic neuropathy (LHON) is a form of disorder caused by pathogenic mutations in a mitochondrial DNA. LHON is maternally inherited disease, which manifests mainly in young adults, affecting predominantly males. Clinically LHON has a manifestation as painless central vision loss, resulting in early onset of disability. Epidemiology of LHON has not been fully investigated yet. In this study, we report 44 genetically unrelated families with LHON manifestation. We performed whole mtDNA genome sequencing and provided genealogical and molecular genetic data on mutations and haplogroup background of LHON patients in the Western Siberia population. Known \"primary\" pathogenic mtDNA mutations (MITOMAP) were found in 32 families: m.11778G>A represents 53,10% (17/32), m.3460G>A - 21,90% (7/32), m.14484T>C - 18,75% (6/32), and rare m.10663T>C and m.3635G>A represent 6,25% (2/32). We describe potentially pathogenic m.4659G>A in one subject without known pathogenic mutations, and potentially pathogenic m.9444C>T, m.6261G>A, m.9921G>A, m.8551T>C, m.8412T>C, m.15077G>A in families with known pathogenic mutations confirmed. We suppose these mutations could contribute to the pathogenesis of optic neuropathy development. Our results indicate that haplogroup affiliation and mutational spectrum of the Western Siberian LHON cohort substantially deviate from those of European populations.
Mitochondrial Genome Diversity in the Central Siberian Plateau with Particular Reference to Prehistory of Northernmost Eurasia
by
Starikovskaya, Elena B
,
Sukernik, Rem I
,
Mallick, Swapan
in
Genetic diversity
,
Genetics
,
Genomes
2019
The Central Siberian Plateau was last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through comprehensive mitochondrial DNA genomes retained in indigenous Siberian populations, the Ket, Tofalar, and Todzhi - we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia over the last 10,000 years. Accordingly, we generated 218 new complete mtDNA sequences and placed them into compound phylogenies along with 7 newly obtained and 70 published ancient mt genomes. Our findings reflect the origins and expansion history of mtDNA lineages that evolved in South-Central Siberia, as well as multiple phases of connections between this region and distant parts of Eurasia. Our result illustrates the importance of jointly sampling modern and prehistoric specimens to fully measure the past genetic diversity and to reconstruct the process of peopling of the high latitudes of the Siberian subcontinent.
Eight thousand years of natural selection in Europe
by
Jones, Eppie R
,
Lozano, Marina
,
Cooper, Alan
in
Deoxyribonucleic acid
,
Diet
,
Genetic diversity
2015
The arrival of farming in Europe around 8,500 years ago necessitated adaptation to new environments, pathogens, diets, and social organizations. While indirect evidence of adaptation can be detected in patterns of genetic variation in present-day people, ancient DNA makes it possible to witness selection directly by analyzing samples from populations before, during and after adaptation events. Here we report the first genome-wide scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture, who we show were members of the population that was the source of Europe's first farmers, and whose genetic material we extracted by focusing on the DNA-rich petrous bone. We identify genome-wide significant signatures of selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.