Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
184
result(s) for
"Du, Yanfang"
Sort by:
A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield
2020
Increasing grain yield of maize (
Zea mays
L.) is required to meet the rapidly expanding demands for maize-derived food, feed, and fuel. Breeders have enhanced grain productivity of maize hybrids by pyramiding desirable characteristics for larger ears. However, loci selected for improving grain productivity remain largely unclear. Here, we show that a serine/threonine protein kinase encoding gene
KERNEL NUMBER PER ROW6 (KNR6)
determines pistillate floret number and ear length. Overexpression of
KNR6
or introgression of alleles lacking the insertions of two transposable elements in the regulatory region of
KNR6
can significantly enhance grain yield. Further in vitro evidences indicate that KNR6 can interact with an Arf GTPase-activating protein (AGAP) and its phosphorylation by KNR6 may affect ear length and kernel number. This finding provides knowledge basis to enhance maize hybrids grain yield.
Selection of kernel number per ear has improved maize yield, but the genetic base is unclear. Here, the authors reveal that a serine/threonine protein kinase KNR6 is a positive regulator of the trait and show
in vitro
evidences that KNR6 may function through phosphorylating an Arf GTPase-activating protein.
Journal Article
An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield
2021
Maize ear size and kernel number differ among lines, however, little is known about the molecular basis of ear length and its impact on kernel number. Here, we characterize a quantitative trait locus,
qEL7
, to identify a maize gene controlling ear length, flower number and fertility.
qEL7
encodes 1-aminocyclopropane-1- carboxylate oxidase2 (ACO2), a gene that functions in the final step of ethylene biosynthesis and is expressed in specific domains in developing inflorescences. Confirmation of
qEL7
by gene editing of
ZmACO2
leads to a reduction in ethylene production in developing ears, and promotes meristem and flower development, resulting in a ~13.4% increase in grain yield per ear in hybrids lines. Our findings suggest that ethylene serves as a key signal in inflorescence development, affecting spikelet number, floral fertility, ear length and kernel number, and also provide a tool to improve grain productivity by optimizing ethylene levels in maize or in other cereals.
Considerable genetic variation exists in maize ear size and kernel number. Here the authors show that variation in a gene encoding an ethylene biosynthetic enzyme impacts ear length, flower fertility and kernel yield suggesting an important role for ethylene signaling during inflorescence development.
Journal Article
UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice
2017
UNBRANCHED3 (UB3), a member of the SQUAMOSA promoter binding protein-like (SPL) gene family, regulates kernel row number by negatively modulating the size of the inflorescence meristem in maize. However, the regulatory pathway by which UB3 mediates branching remains unknown.
We introduced the UB3 into rice and maize to reveal its effects in the two crop plants, respectively. Furthermore, we performed transcriptome sequencing and protein-DNA binding assay to elucidate the regulatory pathway of UB3.
We found that UB3 could bind and regulate the promoters of LONELY GUY1 (LOG1) and Type-A response regulators (ARRs), which participate in cytokinin biosynthesis and signaling. Overexpression of exogenous UB3 in rice (Oryza sativa) dramatically suppressed tillering and panicle branching as a result of a greater decrease in the amount of active cytokinin. By contrast, moderate expression of UB3 suppressed tillering slightly, but promoted panicle branching by cooperating with SPL genes, resulting in a higher grain number per panicle in rice. In maize (Zea mays) ub3 mutant with an increased kernel row number, UB3 showed a low expression but cytokinin biosynthesis-related genes were up-regulated and degradation-related genes were down-regulated.
These results suggest that UB3 regulates vegetative and reproductive branching by modulating cytokinin biosynthesis and signaling in maize and rice.
Journal Article
UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize
2020
Enhancers are cis-acting DNA segments with the ability to increase target gene expression. They show high sensitivity to DNase and contain specific DNA elements in an open chromatin state that allows the binding of transcription factors (TFs). While numerous enhancers are annotated in the maize genome, few have been characterized genetically. KERNEL ROW NUMBER4 (KRN4), an intergenic quantitative trait locus for kernel row number, is assumed to be a cis-regulatory element of UNBRANCHED3 (UB3), a key inflorescence gene. However, the mechanism by which KRN4 controls UB3 expression remains unclear. Here, we found that KRN4 exhibits an open chromatin state, harboring sequences that showed high enhancer activity toward the 35S and UB3 promoters. KRN4 is bound by UB2-centered transcription complexes and interacts with the UB3 promoter by three duplex interactions to affect UB3 expression. Sequence variation at KRN4 enhances ub2 and ub3 mutant ear fasciation. Therefore, we suggest that KRN4 functions as a distal enhancer of the UB3 promoter via chromatin interactions and recruitment of UB2-centered transcription complexes for the fine-tuning of UB3 expression in meristems of ear inflorescences. These results provide evidence that an intergenic region helps to finely tune gene expression, providing a new perspective on the genetic control of quantitative traits.
Journal Article
KRN4 Controls Quantitative Variation in Maize Kernel Row Number
2015
Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize.
Journal Article
The Genetic Basis of Wheat Spike Architecture
2025
Wheat is one of the three major staple crops globally. The wheat spike serves as the primary structure bearing wheat grains. Spike architectures of wheat have a direct impact on the number of grains per spike, and thus the grain yield per spike. The development of wheat spike morphology is conserved to some extent in cereal crops, yet also exhibits differences, being strictly regulated by photoperiod and temperature. This paper compiles QTLs and genes related to wheat spike traits that have been published over the past two decades, summarizes the photoperiod and vernalization pathways influencing the transition from vegetative to reproductive growth, and organizes the key regulatory networks controlling spikelet and floret development. Additionally, it anticipates advancements in wheat gene cloning methods, challenges in optimizing wheat spike architecture for high yield and future directions in wheat spike trait research.
Journal Article
Unlocking the Multifaceted Mechanisms of Bud Outgrowth: Advances in Understanding Shoot Branching
by
Delaplace, Pierre
,
Yuan, Yundong
,
Du, Yanfang
in
Agricultural production
,
Agriculture & agronomie
,
Agriculture & agronomy
2023
Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external cues. This review provides an extensive overview of the genetic, plant hormonal, and environmental factors that regulate shoot branching in several plant species, including rice, Arabidopsis, tomato, and wheat. We especially highlight the central role of TEOSINTE BRANCHED 1 (TB1), a key gene in orchestrating bud outgrowth. In addition, we discuss how the phytohormones cytokinins, strigolactones, and auxin interact to regulate tillering/branching. We also shed light on the involvement of sugar, an integral component of plant development, which can impact bud outgrowth in both trophic and signaling ways. Finally, we emphasize the substantial influence of environmental factors, such as light, temperature, water availability, biotic stresses, and nutrients, on shoot branching. In summary, this review offers a comprehensive evaluation of the multifaced regulatory mechanisms that underpin shoot branching and highlights the adaptable nature of plants to survive and persist in fluctuating environmental conditions.
Journal Article
Whole-genome methylation profiling of extracellular vesicle DNA in gastric cancer identifies intercellular communication features
2025
Extracellular vesicles (EVs) are promising biomarkers for cancer diagnosis and prognosis due to their ability to carry specific biomolecular cargo, including DNA. However, the clinical utility of DNA methylation-based liquid biopsies using EV-DNA remains underexplored. The low quantity and relatively long length of EV-DNA complicate whole-genome methylation profiling. To address this, we develop Tn5-assisted Enzymatic Methyl-sequencing with Post-conversion Tailing (TEMPT), a bisulfite-free whole-genome profiling method for EV-DNA. TEMPT employs single-adapter Tn5 tagmentation, enzymatic conversion of unmodified cytosines, and post-conversion tailing to generate high-depth whole-genome EV-DNA methylomes. We apply TEMPT to EV-DNA from 58 gastric cancer and polyp samples, generating methylomes from sub-nanogram inputs and identifying differentially methylated regions (DMRs) that distinguish cancer from controls. We identify potential cancer biomarkers through DMR-associated genes, highlighting the roles of EVs in cellular communication. Our findings suggest that immune cells may serve as an alternative source of EV-DNA. This approach holds significant promise for advancing EV-DNA research and its applications in early disease diagnosis.
Profiling low-quantity EV-DNA is challenging. Here the authors present TEMPT, a bisulfite-free method for whole-genome methylation analysis from sub-nanogram EV-DNA, which classified gastric cancer and benign cases.
Journal Article
Unveiling the novel immune and molecular signatures of ovarian cancer: insights and innovations from single-cell sequencing
2023
Ovarian cancer is a highly heterogeneous and lethal malignancy with limited treatment options. Over the past decade, single-cell sequencing has emerged as an advanced biological technology capable of decoding the landscape of ovarian cancer at the single-cell resolution. It operates at the level of genes, transcriptomes, proteins, epigenomes, and metabolisms, providing detailed information that is distinct from bulk sequencing methods, which only offer average data for specific lesions. Single-cell sequencing technology provides detailed insights into the immune and molecular mechanisms underlying tumor occurrence, development, drug resistance, and immune escape. These insights can guide the development of innovative diagnostic markers, therapeutic strategies, and prognostic indicators. Overall, this review provides a comprehensive summary of the diverse applications of single-cell sequencing in ovarian cancer. It encompasses the identification and characterization of novel cell subpopulations, the elucidation of tumor heterogeneity, the investigation of the tumor microenvironment, the analysis of mechanisms underlying metastasis, and the integration of innovative approaches such as organoid models and multi-omics analysis.
Journal Article
GIF1 controls ear inflorescence architecture and floral development by regulating key genes in hormone biosynthesis and meristem determinacy in maize
by
Sun, Wei
,
Du, Yanfang
,
Du, Hewei
in
adenosinetriphosphatase
,
Agriculture
,
Biomedical and Life Sciences
2022
Background
Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (
Zea mays
) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to
Unbranched3
. However, the regulatory pathway of
gif1
in ear meristems is relatively unknown.
Result
In this study, we found that loss-of-function
gif1
mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene
RAMOSA2
(
RA2
) and CLAVATA signaling-related gene
CLV3/ENDOSPERM SURROUNDING REGION
(
ESR
)
4a
(
CLE4a
) were directly bound and regulated by GIF1 in the ear inflorescence.
Conclusions
Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.
Journal Article