Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Duan, Xiuzhen"
Sort by:
Citrullinated Histone H3 as a Therapeutic Target for Endotoxic Shock in Mice
Sepsis results in millions of deaths every year, with acute lung injury (ALI) being one of the leading causes of mortality in septic patients. As neutrophil extracellular traps (NETs) are abundant in sepsis, neutralizing components of NETs may be a useful strategy to improve outcomes of sepsis. Citrullinated histone H3 (CitH3) has been recently shown to be involved in the NET formation. In this study, we demonstrate that CitH3 damages human umbilical vein endothelial cells (HUVECs) and potentiates NET formation through a positive feedback mechanism. We developed a novel CitH3 monoclonal antibody to target peptidylarginine deiminase (PAD) 2 and PAD 4 generated CitH3. In a mouse model of lethal lipopolysaccharide (LPS) induced shock, neutralizing CitH3 with the newly developed anti-CitH3 monoclonal antibody attenuates inflammatory responses, ameliorates ALI, and improves survival. Our study suggests that effectively blocking circulating CitH3 might be a potential therapeutic method for the treatment of endotoxemia.
Peptidylarginine deiminase 2 has potential as both a biomarker and therapeutic target of sepsis
Peptidylarginine deiminases (PADs) are a family of calcium-dependent enzymes that are involved in a variety of human disorders, including cancer and autoimmune diseases. Although targeting PAD4 has shown no benefit in sepsis, the role of PAD2 remains unknown. Here, we report that PAD2 is engaged in sepsis and sepsis-induced acute lung injury in both human patients and mice. Pad2-/- or selective inhibition of PAD2 by a small molecule inhibitor increased survival and improved overall outcomes in mouse models of sepsis. Pad2 deficiency decreased neutrophil extracellular trap (NET) formation. Importantly, Pad2 deficiency inhibited Caspase-11-dependent pyroptosis in vivo and in vitro. Suppression of PAD2 expression reduced inflammation and increased macrophage bactericidal activity. In contrast to Pad2-/-, Pad4 deficiency enhanced activation of Caspase-11-dependent pyroptosis in BM-derived macrophages and displayed no survival improvement in a mouse sepsis model. Collectively, our findings highlight the potential of PAD2 as an indicative marker and therapeutic target for sepsis.
Simulation and Fault Diagnosis of Electric Vehicle DC/DC Converter Based on BP Neural Network
In recent years, Power electronic systems (such as DC/DC converters) have become more complex due to their needs. Under a series of harsh operating environments such as high temperatures, they are likely to fail, seriously endangering people’s property safety.This paper focuses on the research on the structure principle and fault diagnosis of the DC/DC converter system of electric vehicles, and introduces the structure principle of the electric vehicle DC/DC converter and the development of power electronic fault diagnosis.And the fault diagnosis method of DC/DC converter system is proposed. Finally, the research on fault diagnosis of DC/DC converters is summarized and prospected, hoping to provide new ideas and perspectives for the research and development of fault diagnosis of DC/DC converters for electric vehicles.
Application of BP neural network in on-board charger fault diagnosis
With the accelerated growth of the number of electric vehicles, the frequent occurrence of electric vehicle charging safety accidents has brought some safety hazards to people. The fault diagnosis of on-board charger circuit has gradually become the focus of attention of scholars. This paper uses simulation software to conduct modeling simulation analysis, failure mode analysis and data acquisition for the on-board charger of electric vehicles, and establishes a fault diagnosis model based on BP neural network, which is applied to the fault diagnosis of on-board charger circuits. The optimal fault diagnosis model is obtained by continuously adjusting the number of neurons in the hidden layer of the BP neural network, and the open-circuit faults of diodes and MOSFETs are mainly analyzed experimentally. The simulation results show that the expected effect has been achieved in the fault diagnosis of the on-board charger circuit, and the established simple BP neural network model can be applied in practice. Some feasible solutions are provided for improving the charging safety of electric vehicles.
High-Capacity Reversible Data Hiding in Encrypted Images Based on 2D-HS Chaotic System and Full Bit-Plane Searching
Using the local correlation of carrier images to embed secret data in MSBs is a popular scheme for reversible data hiding in encrypted images (RDHEI). However, most existing methods based on this scheme face challenges in achieving complete compression while ensuring security. In this study, an RDHEI method that uses a two-dimensional chaotic system and full bit-plane search (FBPS) is proposed. Specifically, the content owner provides cover images and employs a chaotic system to generate chaotic sequences for inter-block non-symmetrical permutation and intra-block diffusion. The special encryption method, combined with chaos, not only preserves the correlation of pixels within a block but also ensures an extremely high level of security. The FBPS technique is applied to detect all smooth bit planes, not limited to continuous MSBs. For data embedding, ‘0’ and ‘1’ are used to record all smooth and rough bit planes to achieve thorough compression. The results of the experiment show that our proposed method provides a high level of security and achieves 2.142 bit/pixel and 2.339 bit/pixel on the typical datasets BOSSbase (Break Our Steganographic System) and BOWS-2 (Break Our Watermarking System 2nd). Compared with the state-of-the-art methods, the embedding capacity has also been significantly improved.
PCTDepth: Exploiting Parallel CNNs and Transformer via Dual Attention for Monocular Depth Estimation
Monocular depth estimation (MDE) has made great progress with the development of convolutional neural networks (CNNs). However, these approaches suffer from essential shortsightedness due to the utilization of insufficient feature-based reasoning. To this end, we propose an effective parallel CNNs and Transformer model for MDE via dual attention (PCTDepth). Specifically, we use two stream backbones to extract features, where ResNet and Swin Transformer are utilized to obtain local detail features and global long-range dependencies, respectively. Furthermore, a hierarchical fusion module (HFM) is designed to actively exchange beneficial information for the complementation of each representation during the intermediate fusion. Finally, a dual attention module is incorporated for each fused feature in the decoder stage to improve the accuracy of the model by enhancing inter-channel correlations and focusing on relevant spatial locations. Comprehensive experiments on the KITTI dataset demonstrate that the proposed model consistently outperforms the other state-of-the-art methods.
Protective Effect of Tubastatin A in CLP-Induced Lethal Sepsis
We have found earlier that Tubastatin A (TubA), a selective inhibitor of histone deacetylase 6 (HDAC6), improves survival in a mouse model of lethal cecal ligation and puncture (CLP)-induced sepsis. However, the underlying mechanisms have not been fully established. This study sought to test the hypothesis that TubA could affect both lung and splenic functions. C57BL/6J mice were subjected to CLP, and randomized to receive either TubA (70 mg/kg) dissolved in dimethyl sulfoxide (DMSO), or DMSO alone, 1 h following CLP. Sham animals acted as control. Twenty-four hours later, lung tissue was harvested for pathological examination, and splenic tissue was harvested for bacterial colonization. In a parallel study, the spleen was collected 48 h following CLP, and single cell suspension was prepared. Splenocytes then underwent flow cytometry to analyze the immune cell population. RAW264.7 macrophages were treated with lipopolysaccharide (LPS) with or without the presence of TubA (10 μM) at 37 °C for 3 h to assess the effect on macrophage phagocytosis. We found that acute lung injury secondary to lethal sepsis was attenuated by TubA. Treatment with TubA restored the percentage of B lymphocytes, and significantly increased percentages of innate immune cells and macrophages compared to the vehicle-treated CLP group. Moreover, TubA significantly decreased the bacterial load in the spleen, and improved the phagocytic ability of RAW264.7 murine macrophages in vitro. Such findings may help to explain the beneficial effects of TubA treatment in a model of lethal sepsis, as previously reported.
Decision of Lymphadenectomy in the Treatment of Endometrial Carcinoma Based on Biopsy Diagnosis
Endometrial biopsy is an important diagnostic tool in the management of endometrial carcinoma. The diagnosis of endometrial carcinoma on biopsy is generally followed by hysterectomy with bilateral salpingo-oophorectomy; however, there is no consensus for performing lymph node (LN) dissection based on the diagnosis of endometrial biopsy, especially in patients with FIGO grade II tumor.