Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
116 result(s) for "Duan, Zhenzhen"
Sort by:
Association between lactate/albumin ratio and all-cause mortality in critical patients with acute myocardial infarction
It has been demonstrated that lactate/albumin (L/A) ratio is substantially relevant to the prognosis of sepsis, septic shock, and heart failure. However, there is still debate regarding the connection between the L/A ratio and severe acute myocardial infarction (AMI). The aim of this study is to determine the prognostic role of L/A ratio in patients with severe AMI. Our retrospective study extracted data from the Medical Information Mart for Intensive Care III (MIMIC-III) database, included 1,134 patients diagnosed with AMI. Based on the tertiles of L/A ratio, the patients were divided into three groups: Tertile1 (T1) group (L/A ratio<0.4063, n =379), Tertile2 (T2) group (0.4063≤L/A ratio≤0.6667, n =379), and Tertile3 (T3) group (L/A ratio>0.6667, n =376). Uni- and multivariate COX regression model were used to analyze the relationship between L/A ratio and 14-day, 28-day and 90-day all-cause mortality. Meanwhile, the restricted cubic spline (RCS) model was used to evaluate the effect of L/A ratio as a continuous variable. Higher mortality was observed in AMI patients with higher L/A ratio. Multivariate Cox proportional risk model validated the independent association of L/A ratio with 14-day all-cause mortality [hazard ratio (HR) 1.813, 95% confidence interval (CI) 1.041-3.156 (T3 vs T1 group)], 28-day all-cause mortality [HR 1.725, 95% CI 1.035-2.874 (T2 vs T1 group), HR 1.991, 95% CI 1.214-3.266 (T3 vs T1 group)], as well as 90-day all-cause mortality [HR 1.934, 95% CI 1.176-3.183 (T2 vs T1 group), HR 2.307, 95% CI 1.426-3.733 (T3 vs T1 group)]. There was a consistent trend in subgroup analysis. The Kaplan-Meier (K-M) survival curves indicated that patients with L/A ratio>0.6667 had the highest mortality. Even after adjusting the confounding factors, RCS curves revealed a nearly linearity between L/A ratio and 14-day, 28-day and 90-day all-cause mortality. Meanwhile, the areas under the receiver operating characteristic (ROC) curve (AUC) of 14-day, 28-day and 90-day all-cause mortality were 0.730, 0.725 and 0.730, respectively. L/A ratio was significantly associated with 14-day, 28-day and 90-day all-cause mortality in critical patients with AMI. Higher L/A ratio will be considered an independent risk factor for higher mortality in AMI patients.
Association between fibrinogen-to-albumin ratio and the presence and severity of coronary artery disease in patients with acute coronary syndrome
Objective Although the levels of plasma fibrinogen and albumin have been proven to be in relation to coronary heart disease (CHD), the association between fibrinogen-to-albumin ratio (FAR) and acute coronary syndrome (ACS) has not been adequately investigated. The aim of this study is to investigate the relationship between FAR and the presence and severity of CHD in patients with ACS. Methods and results A total of 1575 individuals who received coronary angiography (CAG) were enrolled. Patients were divided into the ACS group and the control group. The severity of ACS was determined by Gensini score, number of diseased coronary artery and the presence of myocardial infarction (MI). Data showed that the level of FAR in ACS group was higher than in the control group (81.20 ± 35.45 vs. 72.89 ± 20.24, P  < 0.001). The results from subgroup analysis indicated that the values of FAR in the high Gensini score group, MI group and multiple-vessel stenosis group were higher than the matched subgroups. After adjustment for confounders, FAR was still independently related to the presence and severity of ACS (MI OR 2.097, 95%CI 1.430–3.076; High GS: OR 2.335, 95%CI 1.567–3.479; multiple-vessel disease: OR 2.088, 95%CI 1.439–3.030; P  < 0.05). Conclusion The levels of FAR are independently associated with the presence and the severity of coronary artery disease in patients with ACS. Furthermore, FAR, as a more convenient and rapid biological indicator, may provide a new idea for predicting the presence and severity of ACS.
Development and validation of a prediction model to estimate risk of acute pulmonary embolism in deep vein thrombosis patients
Venous thromboembolism (VTE), clinically presenting as deep vein thrombosis (DVT) or pulmonary embolism (PE). Not all DVT patients carry the same risk of developing acute pulmonary embolism (APE). To develop and validate a prediction model to estimate risk of APE in DVT patients combined with past medical history, clinical symptoms, physical signs, and the sign of the electrocardiogram. We analyzed data from a retrospective cohort of patients who were diagnosed as symptomatic VTE from 2013 to 2018 (n = 1582). Among them, 122 patients were excluded. All enrolled patients confirmed by pulmonary angiography or computed tomography pulmonary angiography (CTPA) and compression venous ultrasonography. Using the LASSO and logistics regression, we derived a predictive model with 16 candidate variables to predict the risk of APE and completed internal validation. Overall, 52.9% patients had DVT + APE (773 vs 1460), 47.1% patients only had DVT (687 vs 1460). The APE risk prediction model included one pre-existing disease or condition (respiratory failure), one risk factors (infection), three symptoms (dyspnea, hemoptysis and syncope), five signs (skin cold clammy, tachycardia, diminished respiration, pulmonary rales and accentuation/splitting of P 2 ), and six ECG indicators (S I Q III T III , right axis deviation, left axis deviation, S 1 S 2 S 3 , T wave inversion and Q/q wave), of which all were positively associated with APE. The ROC curves of the model showed AUC of 0.79 (95% CI, 0.77–0.82) and 0.80 (95% CI, 0.76–0.84) in the training set and testing set. The model showed good predictive accuracy (calibration slope, 0.83 and Brier score, 0.18). Based on a retrospective single-center population study, we developed a novel prediction model to identify patients with different risks for APE in DVT patients, which may be useful for quickly estimating the probability of APE before obtaining definitive test results and speeding up emergency management processes.
Minimum heart rate and mortality after cardiac surgery: retrospective analysis of the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III) database
Low heart rate is a risk factor of mortality in many cardiovascular diseases. However, the relationship of minimum heart rate (MHR) with outcomes after cardiac surgery is still unclear, and the association between optimum MHR and risk of mortality in patients receiving cardiac surgery remains unknown. In this retrospective study using the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III) database, 8243 adult patients who underwent cardiac surgery were included. The association between MHR and the 30-day, 90-day, 180-day, and 1-year mortality of patients undergoing cardiac surgery was analyzed using multivariate Cox proportional hazard analysis. As a continuous variable, MHR was evaluated using restricted cubic regression splines, and appropriate cut-off points were determined. Kaplan–Meier curve was used to further explore the relationship between MHR and prognosis. Subgroup analyses were performed based on age, sex, hypertension, diabetes, and ethnicity. The rates of the 30-day, 90-day, 180-day, and 1-year mortalities of patients in the low MHR group were higher than those in the high MHR group (4.1% vs. 2.9%, P < 0.05; 6.8% vs. 5.3%, P < 0.05; 8.9% vs. 7.0%, P < 0.05, and 10.9% vs. 8.8%, P < 0.05, respectively). Low MHR significantly correlated with the 30-day, 90-day, 180-day, and 1-year mortality after adjusting for confounders. A U-shaped relationship was observed between the 30-day, 90-day, 180-day, and 1-year mortality and MHR, and the mortality was lowest when the MHR was 69 bpm. Kaplan–Meier curve analysis also indicated that low MHR had poor prognosis in patients undergoing cardiac surgery. According to subgroup analyses, the effect of low MHR on post-cardiac surgery survival was restricted to patients who were < 75 years old, male, without hypertension and diabetes, and of White ethnicity. MHR (69 bpm) was associated with better 30-day, 90-day, 180-day, and 1-year survival in patients after cardiac surgery. Therefore, effective HR control strategies are required in this high-risk population.
Genome-wide identification of the class III peroxidase gene family of sugarcane and its expression profiles under stresses
Plant-specific Class III peroxidases (PRXs) play a crucial role in lignification, cell elongation, seed germination, and biotic and abiotic stresses. The class III peroxidase gene family in sugarcane were identified by bioinformatics methods and realtime fluorescence quantitative PCR. Eighty-two PRX proteins were characterized with a conserved PRX domain as members of the class III PRX gene family in R570 STP. The ShPRX family genes were divided into six groups by the phylogenetic analysis of sugarcane, Saccharum spontaneum, sorghum, rice, and . The analysis of promoter -acting elements revealed that most family genes contained -acting regulatory elements involved in ABA, MeJA, light responsiveness, anaerobic induction, and drought inducibility. An evolutionary analysis indicated that ShPRXs was formed after and diverged, and tandem duplication events played a critical role in the expansion of genes of sugarcane. Purifying selection maintained the function of proteins. genes were differentially expressed in stems and leaves at different growth stages in . However, genes were differentially expressed in the SCMV-inoculated sugarcane plants. A qRT-PCR analysis showed that SCMV, Cd, and salt could specifically induce the expression of PRX genes of sugarcane. These results help elucidate the structure, evolution, and functions of the class III gene family in sugarcane and provide ideas for the phytoremediation of Cd-contaminated soil and breeding new sugarcane varieties resistant to sugarcane mosaic disease, salt, and Cd stresses.
Detection of ferric ions by nitrogen and sulfur co-doped potato-derived carbon quantum dots as a fluorescent probe
This paper reports the detection of ferric ions (Fe 3+ ) based on nitrogen and sulfur co-doped carbon quantum dots. These nitrogen and sulfur co-doped carbon quantum dots were synthesized via a hydrothermal route using northern Shaanxi potatoes as carbon sources and ammonium sulfate as nitrogen and sulfur sources. The quantum yields of the carbon quantum dots were found to be 16.96% and 4.23% with and without doping, respectively. The structural details, morphology, and optical properties of carbon quantum dots were analyzed using Fourier transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), ultraviolet-visible absorption spectroscopy (UV–vis), and fluorescence spectroscopy. The as-prepared co-doped carbon quantum dots were utilized as a fluorescent probe for detecting Fe 3+ ions, where the fluorescence intensity of carbon quantum dots was remarkably quenched in the presence of Fe 3+ ions. A good linear relationship for Fe 3+ ion detection was obtained from 0 to 500 μ mol/L with a detection limit as low as 0.26 μ mol/L. Furthermore, the proposed method also provided satisfactory results in the tap water.
Study on ultrasonic evaluation of connection state and service performance of resistance projection welding joints
Fatigue failure of welded joints is a performance factor of structural parts under dynamic load, and the effective evaluation of its life is always the key to the service ability of structures. The fatigue failure process of welded joints is complicated because of the non-uniformity of microstructure and asymmetry of structure. This study utilized ultrasonic C-scan imaging for non-destructive testing of the internal connection states of resistance projection welding (RPW). The connection state of RPW before, during and after fatigue test and the characteristic change of ultrasonic detection image were compared. With the occurrence of fatigue failure behavior, the area representing the fusion connection region in the ultrasonic C-scan image changes. The area of the molten connection zone in the ultrasonic images can quantitatively evaluate the fatigue limit of stainless steel RPW joints, providing an effective method for assessing fatigue life in practical engineering applications.Article HighlightsThe image features of projection joints connection state are analyzed by non-destructive testing method.The connection features on ultrasonic C-scan images of projection joints are identified and extracted.The fatigue performance of the projection joints is effectively predicted and evaluated.
Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression
One of the causative agents of pokkah boeng disease (PBD), which affects sugarcane crops globally, is the fungus Fusarium sacchari. These fungal infections reduce sugar quality and yield, resulting in severe economic losses. Effector proteins play important roles in the interactions between pathogenic fungi and plants. Here, we used bioinformatic prediction approaches to identify 316 candidate secreted effector proteins (CSEPs) in the complete genome of F. sacchari. In total, 95 CSEPs contained known conserved structures, representing 40 superfamilies and 18 domains, while an additional 91 CSEPs contained seven known motifs. Of the 130 CSEPs containing no known domains or motifs, 14 contained one of four novel motifs. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 163 CSEPs. Seven CSEPs suppressed BAX-triggered programmed cell death in N. benthamiana, while four caused cell death in N. benthamiana. The expression profiles of these eleven CSEPs during F. sacchari infection suggested that they may be involved in sugarcane-F. sacchari interaction. Our results establish a basis for further studies of the role of effector molecules in pathogen–sugarcane interactions, and provide a framework for future predictions of pathogen effector molecules.
Nanopore long-read RNA sequencing reveals functional alternative splicing variants in human vascular smooth muscle cells
Vascular smooth muscle cells (VSMCs) are the major contributor to vascular repair and remodeling, which showed high level of phenotypic plasticity. Abnormalities in VSMC plasticity can lead to multiple cardiovascular diseases, wherein alternative splicing plays important roles. However, alternative splicing variants in VSMC plasticity are not fully understood. Here we systematically characterized the long-read transcriptome and their dysregulation in  human aortic smooth muscle cells (HASMCs) by employing the Oxford Nanopore Technologies long-read RNA sequencing in HASMCs that are separately treated with platelet-derived growth factor, transforming growth factor, and hsa-miR-221-3P transfection. Our analysis reveals frequent alternative splicing events and thousands of unannotated transcripts generated from alternative splicing. HASMCs treated with different factors exhibit distinct transcriptional reprogramming modulated by alternative splicing. We also found that unannotated transcripts produce different open reading frames compared to the annotated transcripts. Finally, we experimentally validated the unannotated transcript derived from gene CISD1 , namely CISD1-u , which plays a role in the phenotypic switch of HASMCs. Our study characterizes the phenotypic modulation of HASMCs from an insight of long-read transcriptome, which would promote the understanding and the manipulation of HASMC plasticity in cardiovascular diseases. Long-read RNA-seq analysis identifies and measures novel transcripts in cultured human aortic smooth muscle cells under basal conditions and after treatment with cytokines or CISD1-u knockdown.