Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
65
result(s) for
"Dubner, Ronald"
Sort by:
Inhibition of Class II Histone Deacetylases in the Spinal Cord Attenuates Inflammatory Hyperalgesia
by
Zou, Shiping
,
Ren, Ke
,
Dubner, Ronald
in
Acetylation - drug effects
,
Animals
,
Care and treatment
2010
Background:
Several classes of histone deacetylases (HDACs) are expressed in the spinal cord that is a critical structure of the nociceptive pathway. HDAC-regulated histone acetylation is an important component of chromatin remodeling leading to epigenetic regulation of gene transcription. To understand the role of histone acetylation in epigenetic regulation of pathological pain, we have studied the impact of different classes of HDACs in the spinal cord on inflammatory hyperalgesia induced by complete Freund's adjuvant (CFA).
Results:
We intrathecally applied inhibitors specific to different classes of HDACs and evaluated their impact on inflammatory hyperalgesia. Pre-injected inhibitors targeting class I as well as II (SAHA, TSA, LAQ824) or IIa (VPA, 4-PB) HDACs significantly delayed the thermal hyperalgesia induced by unilateral CFA injection in the hindpaw. Existing hyperalgesia induced by CFA was also attenuated by the HDAC inhibitors (HDACIs). In contrast, these inhibitors did not interfere with the thermal response either in naïve animals, or on the contralateral side of inflamed animals. Interestingly, MS-275 that specifically inhibits class I HDACs failed to alter the hyperalgesia although it increased histone 3 acetylation in the spinal cord as SAHA did. Using immunoblot analysis, we further found that the levels of class IIa HDAC members (HDAC4, 5, 7, 9) in the spinal dorsal horn were upregulated following CFA injection while those of class I HDAC members (HDAC1, 2, 3) remained stable or were slightly reduced.
Conclusions:
Our data suggest that activity of class II HDACs in the spinal cord is critical to the induction and maintenance of inflammatory hyperalgesia induced by CFA, while activity of class I HDACs may be unnecessary. Comparison of the effects of HDACIs specific to class II and IIa as well as the expression pattern of different HDACs in the spinal cord in response to CFA suggests that the members of class IIa HDACs may be potential targets for attenuating persistent inflammatory pain.
Journal Article
Pain Facilitation and Activity-Dependent Plasticity in Pain Modulatory Circuitry: Role of BDNF-TrkB Signaling and NMDA Receptors
by
Ren, Ke
,
Dubner, Ronald
in
Animals
,
Brain-Derived Neurotrophic Factor - metabolism
,
Hyperalgesia - metabolism
2007
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.
Journal Article
In vivo immune interactions of multipotent stromal cells underlie their long-lasting pain-relieving effect
Systemic infusion of bone marrow stromal cells (BMSCs), a major type of multipotent stromal cells, produces pain relief (antihyperalgesia) that lasts for months. However, studies have shown that the majority of BMSCs are trapped in the lungs immediately after intravenous infusion and their survival time in the host is inconsistent with their lengthy antihyperalgesia. Here we show that long-lasting antihyperalgesia produced by BMSCs required their chemotactic factors such as CCL4 and CCR2, the integrations with the monocytes/macrophages population, and BMSC-induced monocyte CXCL1. The activation of central mu-opioid receptors related to CXCL1-CXCR2 signaling plays an important role in BMSC-produced antihyperalgesia. Our findings suggest that the maintenance of antihypergesia can be achieved by immune regulation without actual engraftment of BMSCs. In the capacity of therapeutic use of BMSCs other than structural repair and replacement, more attention should be directed to their role as immune modulators and subsequent alterations in the immune system.
Journal Article
Spinal 5-HT3 Receptors Mediate Descending Facilitation and Contribute to Behavioral Hypersensitivity via a Reciprocal Neuron-Glial Signaling Cascade
2014
Background:
It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear.
Results:
In the present study, activation of spinal 5-HT3 receptors by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via the chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of NMDA receptors in the spinal dorsal horn. Glial hyperactivation in spinal dorsal horn after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference.
Conclusions:
These findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neurons and glia.
Journal Article
Interactions between the immune and nervous systems in pain
2010
Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.
Journal Article
Trigeminal-Rostral Ventromedial Medulla Circuitry is Involved in Orofacial Hyperalgesia Contralateral to Tissue Injury
2012
Background:
Our previous studies have shown that complete Freund's adjuvant (CFA)-induced masseter inflammation and microinjection of the pro-inflammatory cytokine interleukin-1β (IL-1β) into the subnucleus interpolaris/subnucleus caudalis transition zone of the spinal trigeminal nucleus (Vi/Vc) can induce contralateral orofacial hyperalgesia in rat models. We have also shown that contralateral hyperalgesia is attenuated with a lesion of the rostral ventromedial medulla (RVM), a critical site of descending pain modulation. Here we investigated the involvement of the RVM-Vi/Vc circuitry in mediating contralateral orofacial hyperalgesia after an injection of CFA into the masseter muscle.
Results:
Microinjection of the IL-1 receptor antagonist (5 nmol, n=6) into the ipsilateral Vi/Vc attenuated the CFA-induced contralateral hyperalgesia but not the ipsilateral hyperalgesia. Intra-RVM post-treatment injection of the NK1 receptor antagonists, RP67580 (0.5-11.4 nmol) and L-733,060 (0.5-11.4 nmol), attenuated CFA-induced bilateral hyperalgesia and IL-1β induced bilateral hyperalgesia. Serotonin depletion in RVM neurons prior to intra-masseter CFA injection prevented the development of contralateral hyperalgesia 1–3 days after CFA injection. Inhibition of 5-HT3 receptors in the contralateral Vi/Vc with direct microinjection of the select 5-HT3 receptor antagonist, Y-25130 (2.6-12.9 nmol), attenuated CFA-induced contralateral hyperalgesia. Lesions to the ipsilateral Vc prevented the development of ipsilateral hyperalgesia but did not prevent the development of contralateral hyperalgesia.
Conclusions:
These results suggest that the development of CFA-induced contralateral orofacial hyperalgesia is mediated through descending facilitatory mechanisms of the RVM-Vi/Vc circuitry.
Journal Article
Differential Involvement of Trigeminal Transition Zone and Laminated Subnucleus Caudalis in Orofacial Deep and Cutaneous Hyperalgesia: the Effects of Interleukin-10 and Glial Inhibitors
by
Zou, Shiping
,
Iwata, Koichi
,
Ren, Ke
in
Animals
,
Anti-Bacterial Agents - pharmacology
,
Behavior
2009
Background
In addition to caudal subnucleus caudalis (Vc) of the spinal trigeminal complex, recent studies indicate that the subnuclei interpolaris/caudalis (Vi/Vc) transition zone plays a unique role in processing deep orofacial nociceptive input. Studies also suggest that glia and inflammatory cytokines contribute to the development of persistent pain. By systematically comparing the effects of microinjection of the antiinflammatory cytokine interleukin (IL)-10 and two glial inhibitors, fluorocitrate and minocycline, we tested the hypothesis that there was a differential involvement of Vi/Vc and caudal Vc structures in deep and cutaneous orofacial pain.
Results
Deep or cutaneous inflammatory hyperalgesia, assessed with von Frey filaments, was induced in rats by injecting complete Freund's adjuvant (CFA) into the masseter muscle or skin overlying the masseter, respectively. A unilateral injection of CFA into the masseter or skin induced ipsilateral hyperalgesia that started at 30 min, peaked at 1 d and lasted for 1–1 weeks. Secondary hyperalgesia on the contralateral site also developed in masseter-, but not skin-inflamed rats. Focal microinjection of IL-10 (0.006-1 ng), fluorocitrate (1 μg), and minocycline (0.1-1 μg) into the ventral Vi/Vc significantly attenuated masseter hyperalgesia bilaterally but without an effect on hyperalgesia after cutaneous inflammation. Injection of the same doses of these agents into the caudal Vc attenuated ipsilateral hyperalgesia after masseter and skin inflammation, but had no effect on contralateral hyperalgesia after masseter inflammation. Injection of CFA into the masseter produced significant increases in N-methyl-D-aspartate (NMDA) receptor NR1 serine 896 phosphorylation and glial fibrillary acidic protein (GFAP) levels, a marker of reactive astrocytes, in Vi/Vc and caudal Vc. In contrast, cutaneous inflammation only produced similar increases in the Vc.
Conclusion
These results support the hypothesis that the Vi/Vc transition zone is involved in deep orofacial injury and suggest that glial inhibition and interruption of the cytokine cascade after inflammation may provide pain relief.
Journal Article
Long Lasting Pain Hypersensitivity following Ligation of the Tendon of the Masseter Muscle in Rats: A Model of Myogenic Orofacial Pain
by
Zou, Shiping
,
Ren, Ke
,
Dubner, Ronald
in
Adrenergic Uptake Inhibitors - pharmacology
,
Analgesics - pharmacology
,
Animals
2010
Background:
A major subgroup of patients with temporomandibular joint (TMJ) disorders have masticatory muscle hypersensitivity. To study myofacial temporomandibular pain, a number of preclinical models have been developed to induce myogenic pain of the masseter muscle, one of the four muscles involved in mastication. The currently used models, however, generate pain that decreases over time and only lasts from hours to weeks and hence are not suitable for studying chronicity of the myogenic pain in TMJ disorders. Here we report a model of constant myogenic orofacial pain that lasts for months.
Results:
The model involves unilateral ligation of the tendon of the anterior superficial part of the rat masseter muscle (TASM). The ligation of the TASM was achieved with two chromic gut (4.0) ligatures via an intraoral approach. Nocifensive behavior of the rat was assessed by probing the skin site above the TASM with a series of von Frey filaments. The response frequencies were determined and an EF50 value, defined as the von Frey filament force that produces a 50% response frequency, was derived and used as a measure of mechanical sensitivity. Following TASM ligation, the EF50 of the injured side was significantly reduced and maintained throughout the 8-week observation period, suggesting the presence of mechanical hyperalgesia/allodynia. In sham-operated rats, the EF50 of the injured side was transiently reduced for about a week, likely due to injury produced by the surgery. Somatotopically relevant Fos protein expression was indentified in the subnucleus caudalis of the spinal trigeminal sensory complex. In the same region, persistent upregulation of NMDA receptor NR1 phosphorylation and protein expression and increased expression of glial markers glial fibrillary acidic protein (astroglia) and CD1 1b (microglia) were found. Morphine (0.4–8 mg/kg, s.c.) and duloxetine (0.4–20 mg/kg, i.p.), a selective serotonin-norepinephrine reuptake inhibitor, produced dose-dependent attenuation of hyperalgesia.
Conclusions:
Ligation injury of the TASM in rats led to long-lasting and constant mechanical hypersensitivity of myogenic origin. The model will be particularly useful in studying the chronicity of myogenic pain TMJ disorders. The model can also be adapted to other regions of the body for studying pathology of painful tendinopathy seen in sports injury, muscle overuse, and rheumatoid arthritis.
Journal Article
NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief
2018
Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain hypersensitivity. This effect involves BMSC's ability to interact with the immune system and activation of the endogenous opioid receptors in the pain modulatory circuitry. The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that regulates gene expression involved in immunity. We tested the hypothesis that the NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway, that has been shown to play an important role in BMSC-produced antihyperalgesia. In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL), BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited predominant neuronal localization in the RVM with scattered distribution in glial cells. At 1 week, but not 8 weeks after BMSC infusion, western blot and immunostaining showed that p65 of NF-κB was significantly increased in the RVM. Given that chemokine signaling is critical to BMSCs' pain-relieving effect, we further evaluated a role of chemokine signaling in p65 upregulation. Prior to infusion of BMSCs, we transduced BMSCs with
shRNA, incubated BMSCs with RS 102895, a CCR2b antagonist, or maraviroc, a CCR5 antagonist. The antagonism of chemokines significantly reduced BMSC-induced upregulation of p65, suggesting that upregulation of p65 was related to BMSCs' pain-relieving effect. We then tested the effect of a selective NF-κB activation inhibitor, BAY 11-7082. The mechanical hyperalgesia of the rat was assessed with the von Frey method. In the pre-treatment experiment, BAY 11-7082 (2.5 and 25 pmol) was injected into the RVM at 2 h prior to BMSC infusion. Pretreatment with BAY 11-7082 attenuated BMSCs' antihyperalgesia, but post-treatment at 5 weeks post-BMSC was not effective. On the contrary, in TL rats receiving BAY 11-7082 without BMSCs, TL-induced hyperalgesia was attenuated, consistent with dual roles of NF-κB in pain hypersensitivity and BMSC-produced pain relief. These results indicate that the NF-κB signaling pathway in the descending circuitry is involved in initiation of BMSC-produced behavioral antihyperalgesia.
Journal Article
Effects of Desipramine, Amitriptyline, and Fluoxetine on Pain in Diabetic Neuropathy
1992
AMITRIPTYLINE reduces pain in patients with painful diabetic neuropathy or other neuropathic pain syndromes,
1
2
3
but treatment is often compromised by the sedation, urinary retention, or orthostatic hypotension caused by the drug. It has a wide range of pharmacologic actions, including inhibition of norepinephrine and serotonin reuptake and antagonism of muscarinic cholinergic, histamine H
1
, and alpha-adrenergic receptors.
4
Drugs that selectively affect the neurotransmitter systems responsible for pain relief might be useful substitutes for amitriptyline.
This study was designed to test the hypothesis that amitriptyline relieves neuropathic pain by blocking the reuptake of either norepinephrine or serotonin, neurotransmitters that are . . .
Journal Article