Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
70 result(s) for "Ducrot, Christian"
Sort by:
A participatory approach for building ex ante impact pathways towards a prudent use of antimicrobials in pig and poultry sectors in France
Antimicrobial resistance (AMR) is a global public health threat responsible for 700,000 deaths per year worldwide. There is scientific evidence of the causal relationship between antimicrobial use (AMU) along the food chain and AMR. Improving AMU in livestock is therefore a key component in the fight against AMR. To improve AMU in livestock, there is no one-size-fits-all solution and strategies must be context-adapted and socially acceptable for actors in order to increase AMU sustainability. AMU decision-making is based on an interdependent set of economic, behavioral, ethical, and cultural factors that need to be assessed to advise on the potential impacts of measures. We hypothesized that a participatory strategic planning approach may increase the plausibility and the efficacy of the strategies formulated by facilitating the dialogue between actors of diverse backgrounds, stimulating innovative thinking and constant considerations of contextual factors, actors and impacts. We adapted and applied the ImpresS ex ante approach (IMPact in reSearch in the South, https://impress-impact-recherche.cirad.fr/ ) within a Living Lab engaging actors from the French pig and poultry sectors in co-creation of innovative strategies towards improved AMU. We conducted semi-structured interviews and participatory workshops between April 2021 and March 2022. The results describe 1) an initial diagnosis of the current AMU situation in the pig and poultry sectors in France; 2) a common vision of the future to which participants would like to contribute through the intervention; 3) an identification of the current problems opposed to this vision of the future; 4) a defined scope of the intervention; 5) a typology of actors protagonist or impacted by those issues and 6) outcome maps to solve a priority problem related to indicators and monitoring. This study provides recommendations for decision-makers on plausible and innovative strategies to sustainably improve AMU in pig and poultry sectors in France and evidence of the benefits of participatory strategic planning approaches.
Antimicrobial Resistance in Africa—How to Relieve the Burden on Family Farmers
Although currently available data indicate that Africa has the lowest usage of antimicrobials in animals in the world (adjusted by animal biomass), data show a high prevalence of antimicrobial resistance in foodborne pathogens isolated from animals and animal products. Apart from the lack of solid data on antimicrobial use in many countries in Africa, different hypotheses could explain this situation. Qualitative interviews of farmers show a lack of knowledge and uninformed use of antimicrobials. Considering the development of animal farming to meet an increasing demand for proteins, this deficiency represents a serious public health issue. We advocate for policies that consider the specific challenges faced by family farmers in Africa, to simultaneously improve access to veterinary drugs while strengthening the regulation of their use. We propose a global approach targeting the agri-food system, offering innovative social and technical interventions on antimicrobial usage, adapted to family farmers.
Why Did Bluetongue Spread the Way It Did? Environmental Factors Influencing the Velocity of Bluetongue Virus Serotype 8 Epizootic Wave in France
Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007-2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.
Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records
We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events.
Did Vaccination Slow the Spread of Bluetongue in France?
Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1) epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.
Towards a Better Use of Antimicrobials on Farms: Insights from a Participatory Approach in the French Pig and Poultry Sectors
Despite the strong decrease in antimicrobial use in the French poultry and pig sectors over the last decade, room for improvement remains. A participatory approach was set up in France, involving representatives of veterinarians, the pig and poultry industries, technical institutes, the French Ministry of Agriculture, and researchers, to further improve how antimicrobials are used on farms. By successively defining a shared, long-term vision of future antimicrobial use on farms, identifying lock-in mechanisms impeding this future vision from being realized, and articulating practical questions on how to move in the desired direction, the group rapidly reached a consensus. The results highlight the need for consensual standardized monitoring tools that would allow farmers and veterinarians to jointly monitor the health, welfare, antimicrobial resistance, and antimicrobial use on farms. Other results relate to better communication and training for citizens regarding animal health, animal welfare, and proper antimicrobial use; some benefits but also counterproductive effects of antibiotic-free labels that imperil animal health and welfare; the economic competitiveness of farms on international markets; and the economic sustainability of farm animal veterinary practices. These results call for a concerted way to produce tools for farmers and veterinarians and the broader involvement of other food sector actors.
Questionnaire-based survey on the distribution and incidence of canine babesiosis in countries of Western Europe
: The incidence of canine babesiosis may vary considerably from one country to another depending on the distribution of the causative parasite species and their specific vectors. The aim of the present study was to evaluate the clinical occurrence of canine babesiosis diagnosed in European veterinary clinics and propose an updated map of the disease distribution in Western Europe. Questionnaires were sent to companion animal veterinary clinics in Spain, France, Benelux, Germany and Austria. The annual number of babesiosis cases in 2010, the number of practitioners in the clinic and the location of the clinic were recorded. The total numbers of dogs and practitioners in each country were used for definition of the reference populations and the annual incidence of canine babesiosis was calculated by dividing the total number of reported babesiosis cases by the total number of dogs in the veterinary practices involved in the study. Data were georeferenced for distribution map construction. The overall annual incidence of clinical babesiosis amongst the investigated dog population was 0.7%, with significant variations amongst countries and regions. Three epidemiological situations were described: (i) Spain, with co-existence of several species of piroplasms and patchy distribution of babesiosis, (ii) France, with overall presence of babesiosis due to Babesia canis and local variations and (iii) Benelux, Germany and Austria, with overall low prevalence of the disease associated with localised description related either to imported cases or to small autochthonous foci of B. canis infection.
Diagnosis and incidence risk of clinical canine monocytic ehrlichiosis under field conditions in Southern Europe
BackgroundCanine Monocytic Ehrlichiosis (CME), due to the bacterium Ehrlichia canis and transmitted by the brown dog tick Rhipicephalus sanguineus, is a major tick-borne disease in southern Europe. In this area, infections with other vector-borne pathogens (VBP) are also described and result in similar clinical expression. The aim of the present study was to evaluate the incidence risk of clinical CME in those endemic areas and to assess the potential involvement of other VBP in the occurrence of clinical and/or biological signs evocative of the disease.MethodsThe study was conducted from April to November 2011 in veterinary clinics across Italy, Spain and Portugal. Sick animals were included when fitting at least three clinical and/or biological criteria compatible with ehrlichiosis. Serological tests (SNAP®4Dx, SNAP®Leish tests, Idexx, USA) and diagnostic PCR for E. canis, Anaplasma platys, Anaplasma phagocytophilum, Babesia spp, Hepatozoon canis and Leishmania infantum detection were performed to identify the etiological agents. Ehrlichiosis was considered when three clinical and/or biological suggestive signs were associated with at least one positive paraclinical test (serology or PCR). The annual incidence risk was calculated and data were geo-referenced for map construction. The probabilities of CME and other vector-borne diseases when facing clinical and/or biological signs suggestive of CME were then evaluated.ResultsA total of 366 dogs from 78 veterinary clinics were enrolled in the survey. Among them, 99 (27%) were confirmed CME cases, which allowed an estimation of the average annual incidence risk of CME amongst the investigated dog population to be 0.08%. Maps showed an increasing gradient of CME incidence risk from northern towards southern areas, in particular in Italy. It also suggested the existence of hot-spots of infections by VBP in Portugal. In addition, the detection of other VBP in the samples was common and the study demonstrated that a dog with clinical signs evocative of CME is as likely to be positive to Ehrlichia canis as to another VBP.ConclusionsThe study confirms the endemicity of CME in southern Europe and highlights the difficulties encountered by veterinarians to differentiate CME from other vector-borne diseases under field conditions.
Epidemiological assessment of the factors associated with antimicrobial use in French free-range broilers
Background Although the poultry sector accounts for a major portion of global antimicrobial consumption, few studies have explored the factors which influence antimicrobial use (AMU) in poultry farms in Europe. We performed a matched case-control study in traditional free-range broiler farms in France during 2016 to evaluate the effect of technical factors and farmers’ perceptions of health problems on the probability of AMU. In total, 52 cases (defined as flocks treated with antimicrobials when chickens were between 1 and 42 days old), were included. Another 208 controls (untreated flocks the same ages as the case flocks), were randomly selected and paired with a matching case (same farmer organization and placement date). On-farm questionnaires were administered. Multivariable logistic regression modeling was conducted; seven variables were significant in the final model. Results Two factors were associated with a lower probability of AMU: the use of chicken paper topped with starter feed (OR = 0.3; 95% CI = [0.1; 0.9]) and the use of herbal drugs as a prophylaxis (OR = 0.1; 95% CI = [0.01; 0.5]). A higher probability of AMU was associated with farmers perceiving the cumulative mortality of chicks between 1 and 10 days old as normal (OR = 10.1; 95% CI = [1.7; 59]) or high (OR = 58.7; 95% CI = [9.6; 372.3]). A higher probability of AMU also was associated with farmers detecting a health problem (OR = 12.5, 95% CI = [4.2; 36.9]) and phone calls between farmers and their technicians (OR = 5.9; 95% CI = [2.3; 14.8]) when chicks are between 11 to 42 days old. Two additional factors (litter thickness and cleaning/disinfecting) were significant and highlighted the importance of technical factors such as biosecurity. Conclusions Our results suggest that to reduce AMU, technical training should be provided to farmers to improve how farms are monitored and to reinforce preventive health measures. Training also should address how farmers assess warning criteria like daily mortality rates, which when overestimated often lead to antimicrobial treatment.