Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Dugan, Cory W"
Sort by:
Temporal tracking of cysteine 34 oxidation of plasma albumin as a biomarker of muscle damage following a bout of eccentric exercise
PurposeExercise-induced muscle damage (EIMD) results in the generation of reactive oxygen species (ROS), but little is known about the temporal profile of change in ROS post-EIMD and how ROS levels relate to the onset of and recovery from EIMD. Our primary aim was to examine the effect of EIMD on the pattern of change in the blood level of thiol-oxidised albumin, a marker of oxidative stress.MethodsSeven male participants were subjected on separate days to eccentric muscle contraction to cause EIMD or a no-exercise condition. After each session, the participants collected daily dried blood spots to measure thiol-oxidised albumin and returned to the laboratory every 2 days for the assessment of indirect markers of EIMD, namely maximal voluntary contraction (MVC), delayed onset muscle soreness (DOMS), creatine kinase (CK), and myoglobin.ResultsEccentric exercise resulted in a significant decrease in MVC and increase in DOMS, CK, myoglobin, and thiol-oxidised albumin with the latter reaching above baseline level within 24–48 h post-exercise. All the markers of EIMD returned to baseline level within 6 days post-exercise, but not the level of thiol-oxidised albumin which remained elevated for 10 days after exercise. There was a moderate correlation between changes in thiol-oxidised albumin and DOMS, but no significant relationship between any other markers of muscle damage.ConclusionThe levels of thiol-oxidised albumin increase in response to EIMD and remain elevated for several days post-exercise. The temporal pattern of change in the level of thiol-oxidised albumin suggests that this may be a useful biomarker of muscle repair post-EIMD.