Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
10,087
result(s) for
"Dunne, Susan"
Sort by:
Macro to micro
2019
Although primarily valued for their suitability for oceanographic applications and soil moisture estimation, microwave remote sensing observations are also sensitive to plant water content (M
w). Since M
w depends on both plant water status and biomass, these observations have the potential to be useful for a range of plant drought response studies. In this paper, we introduce the principles behind microwave remote sensing observations to illustrate how they are sensitive to plant water content and discuss the relationship between landscape-scale M
w and common stand-scale metrics, including plant-scale relative water content, live fuel moisture content and leaf water potential. Lastly, we discuss how various sensor types can be leveraged for specific applications depending on the spatio-temporal resolution needed.
Journal Article
Origin and fate of atmospheric moisture over continents
by
van der Ent, Rudi J.
,
Steele-Dunne, Susan C.
,
Schaefli, Bettina
in
Atmosphere
,
Budgets
,
Evaporation
2010
There has been a long debate on the extent to which precipitation relies on terrestrial evaporation (moisture recycling). In the past, most research focused on moisture recycling within a certain region only. This study makes use of new definitions of moisture recycling to study the complete process of continental moisture feedback. Global maps are presented identifying regions that rely heavily on recycled moisture as well as those that are supplying the moisture. An accounting procedure based on ERA‐Interim reanalysis data is used to calculate moisture recycling ratios. It is computed that, on average, 40% of the terrestrial precipitation originates from land evaporation and that 57% of all terrestrial evaporation returns as precipitation over land. Moisture evaporating from the Eurasian continent is responsible for 80% of China's water resources. In South America, the Río de la Plata basin depends on evaporation from the Amazon forest for 70% of its water resources. The main source of rainfall in the Congo basin is moisture evaporated over East Africa, particularly the Great Lakes region. The Congo basin in its turn is a major source of moisture for rainfall in the Sahel. Furthermore, it is demonstrated that due to the local orography, local moisture recycling is a key process near the Andes and the Tibetan Plateau. Overall, this paper demonstrates the important role of global wind patterns, topography and land cover in continental moisture recycling patterns and the distribution of global water resources.
Journal Article
Sentinel-1 SAR Backscatter Response to Agricultural Drought in The Netherlands
by
Kumar, Vineet
,
Shorachi, Maurice
,
Steele-Dunne, Susan C.
in
Agricultural drought
,
Agricultural production
,
agriculture
2022
Drought is a major natural hazard that impacts agriculture, the environment, and socio-economic conditions. In 2018 and 2019, Europe experienced a severe drought due to below average precipitation and high temperatures. Drought stress affects the moisture content and structure of agricultural crops and can result in lower yields. Synthetic Aperture Radar (SAR) observations are sensitive to the dielectric and geometric characteristics of crops and underlying soils. This study uses data from ESA’s Sentinel-1 SAR satellite to investigate the influence of drought stress on major arable crops of the Netherlands, its regional variability and the impact of water management decisions on crop development. Sentinel-1 VV, VH and VH/VV backscatter data are used to quantify the variability in the spatio-temporal dynamics of agricultural crop parcels in response to drought. Results show that VV and VH backscatter values are 1 to 2 dB lower for crop parcels during the 2018 drought compared to values in 2017. In addition, the growth season indicated by the cross-ratio (CR, VH/VV) for maize and onion is shorter during the drought year. Differences due to irrigation restrictions are observed in backscatter response from maize parcels. Lower CR values in 2019 indicate the impact of drought on the start of the growing season. Results demonstrate that Sentinel-1 can detect changes in the seasonal cycle of arable crops in response to agricultural drought.
Journal Article
An Agenda for Land Data Assimilation Priorities: Realizing the Promise of Terrestrial Water, Energy, and Vegetation Observations From Space
by
Draper, Clara
,
Balsamao, Gianpaolo
,
Bonan, Bertrand
in
Anthropogenic factors
,
Atmosphere
,
Atmospheric boundary layer
2022
The task of quantifying spatial and temporal variations in terrestrial water, energy, and vegetation conditions is challenging due to the significant complexity and heterogeneity of these conditions, all of which are impacted by climate change and anthropogenic activities. To address this challenge, Earth Observations (EOs) of the land and their utilization within data assimilation (DA) systems are vital. Satellite EOs are particularly relevant, as they offer quasi-global coverage, are non-intrusive, and provide uniformity, rapid measurements, and continuity. The past three decades have seen unprecedented growth in the number and variety of land remote sensing technologies launched by space agencies and commercial companies around the world. There have also been significant developments in land modeling and DA systems to provide tools that can exploit these measurements. Despite these advances, several important gaps remain in current land DA research and applications. This paper discusses these gaps, particularly in the context of using DA to improve model states for short-term numerical weather and sub-seasonal to seasonal predictions. We outline an agenda for land DA priorities so that the next generation of land DA systems will be better poised to take advantage of the significant current and anticipated shifts and advancements in remote sensing, modeling, computational technologies, and hardware resources.
Journal Article
Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data
2012
Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field.
Journal Article
Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products
by
Vreugdenhil, Mariette
,
Steele-Dunne, Susan C.
,
Wagner, Wolfgang
in
Algorithms
,
angle of incidence
,
ASCAT
2021
The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.
Journal Article
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon
by
Petchiappan, Ashwini
,
Vreugdenhil, Mariette
,
Steele-Dunne, Susan C.
in
Availability
,
Backscatter
,
Backscattering
2022
Microwave observations are sensitive to plant water content and could therefore provide essential information on biomass and plant water status in ecological and agricultural applications. The combined data record of the C-band scatterometers on the European Remote-Sensing Satellites (ERS)-1/2, the Metop (Meteorological Operational satellite) series, and the planned Metop Second Generation satellites will span over 40 years, which would provide a long-term perspective on the role of vegetation in the climate system. Recent research has indicated that the unique viewing geometry of the Advanced SCATterometer (ASCAT) could be exploited to observe vegetation water dynamics. The incidence angle dependence of backscatter can be described with a second order polynomial, the slope and curvature of which are related to vegetation. In a study limited to grasslands, seasonal cycles, spatial patterns, and interannual variability in the slope and curvature were found to vary among grassland types and were attributed to differences in moisture availability, growing season length and phenological changes. To exploit ASCAT slope and curvature for global vegetation monitoring, their dynamics over a wider range of vegetation types needs to be quantified and explained in terms of vegetation water dynamics. Here, we compare ASCAT data with meteorological data and GRACE equivalent water thickness (EWT) to explain the dynamics of ASCAT backscatter, slope, and curvature in terms of moisture availability and demand. We consider differences in the seasonal cycle, diurnal differences, and the response to the 2010 and 2015 droughts across ecoregions in the Amazon basin and surroundings. Results show that spatial and temporal patterns in backscatter reflect moisture availability indicated by GRACE EWT. Slope and curvature dynamics vary considerably among the ecoregions. The evergreen forests, often used as a calibration target, exhibit very stable behavior, even under drought conditions. The limited seasonal variation follows changes in the radiation cycle and may indicate phenological changes such as litterfall. In contrast, the diversity of land cover types within the Cerrado region results in considerable heterogeneity in terms of the seasonal cycle and the influence of drought on both slope and curvature. Seasonal flooding in forest and savanna areas also produced a distinctive signature in terms of the backscatter as a function of incidence angle. This improved understanding of the incidence angle behavior of backscatter increases our ability to interpret and make optimal use of the ASCAT data record and vegetation optical depth products for vegetation monitoring.
Journal Article
Agricultural SandboxNL: A national-scale database of parcel-level processed Sentinel-1 SAR data
2022
Synthetic Aperture Radar (SAR) data handling, processing, and interpretation are barriers preventing a rapid uptake of SAR data by application specialists and non-expert domain users in the field of agricultural monitoring. To improve the accessibility of Sentinel-1 data, we have generated a reduced-volume, multi-year Sentinel-1 SAR database. It includes mean and standard deviation of VV, VH and VH/VV backscatter, pixel counts, geometry, crop type, local incidence angle and azimuth angle at parcel-level. The database uses around 3100 Sentinel-1 images (5 TB) to produce a 12 GB time series database for approximately 770,000 crop parcels over the Netherlands for a period of three years. The database can be queried by Sentinel-1 system parameters (e.g. relative orbit) or user application-specific parameters (e.g. crop type, spatial extent, time period) for parcel level assessment. The database can be used to accelerate the development of new tools, applications and methodologies for agricultural and water related applications, such as parcel-level crop bio-geophysical parameter estimation, inter-annual variability analysis, drought monitoring, grassland monitoring and agricultural management decision-support.Measurement(s)parcel-level backscatter • cross-ratioTechnology Type(s)SAR remote sensing • Sentinel-1 • Google Earth EngineSample Characteristic - LocationThe Netherlands
Journal Article