Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
75 result(s) for "Durkee, R"
Sort by:
Coalescence Efficiency Measurements for Minimally Charged Cloud Drops
Laboratory measurements were made of the collison cross section for water drops freely falling in air to evaluate coalescence efficiencies for cloud drops of 55-105 mum radius in a radius ratio range of 0.5-1.0. The charge on drops was minimized by control of the electric field at the location of drop formation and was further reduced using bipolar ions.
Delays in nutrient cycling and plant population oscillations
It is well known that delay-differential and delay-difference equations can produce plausible simulations of population oscillations, but many of these equations lack a specific mechanism responsible for the delay. We suggest that delays in release of nitrogen from decomposing litter, caused by microbial uptake, could produce oscillations in populations when the delay in the release of nitrogen is longer than the characteristic time scale of nitrogen uptake. We present a model which captures these dynamics. As the parameter controlling microbial uptake of nitrogen during litter decay increases, the model solutions bifurcate from fixed point equilibria, to periodic orbits (oscillations) which remain bounded for ecologically very long times, and finally to extinction of the plant population because of rapid increases in the amplitude of the oscillations. We suggest that such a mechanism may be especially important for annual plants which do not store nitrogen in perennial tissues to buffer delays. Natural populations of wild rice (Zizania palustris), an annual plant, oscillate with approximately four-year periods. Our model qualitatively mimics the period and shape of population oscillations in wild rice with parameter values in the range of those determined by experiments. The model therefore demonstrates a logical and experimentally plausible link between plant population dynamics and the ecosystem processes delaying the cycling of limiting nutrients.
The Recently Discovered Dwarf Nova System ASAS J002511+1217.2: A New WZ Sagittae Star1
The cataclysmic variable ASAS J002511+1217.2 was discovered in outburst by the All‐Sky Automated Survey (ASAS) in 2004 September, and intensively monitored by AAVSO observers through the following 2 months. Both photometry and spectroscopy indicate that this is a very short period system. Clearly defined superhumps with a period of \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $0.05687\\pm 0.00001$ \\end{document} (1 σ) days (81.9 minutes) are present during the superoutburst, 5 to 18 days following the ASAS detection. We observe a change in superhump profile similar to the transition to “late superhumps” observed in other short‐period systems; the superhump period appears to increase slightly for a time before returning to the original value, with the resulting superhump phase offset by approximately half a period. We detect variations with a period of \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $0.05666\\pm 0.00003$ \\end{document} (1 σ) days (81.6 minutes) during the 4 day quiescent phase between the end of the main outburst and the single echo outburst. Weak variations having the original superhump period reappear during the echo and its rapid decline. Time‐resolved spectroscopy conducted nearly 30 days after detection and well into the decline yields an orbital period measurement of \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $82\\pm 5$ \\end{document} minutes. Both narrow and broad components are present in the emission‐line spectra, indicating the presence of multiple emission regions. The weight of the observational evidence suggests that ASAS J002511+1217.2 is a WZ Sge–type dwarf nova, and we discuss how this system fits into the WZ classification scheme.
High-Density Composites Replace Lead
The use of lead in many products and devices poses certain health risks and environmental concerns. A new line of nontoxic, high-density, polymer-metal composites, trademarked as Ecomass(R) Compounds, can replace lead and many other traditional metallic materials in a variety of application areas, including weighting, balancing, vibration dampening and radiation shielding. 'These composite materials are custom formulated to provide a wide range of physical properties and are designed to process on conventional injection molding, compression molding and extrusion equipment. These materials meet some of the most demanding requirements in industries such as defense, power generation, medical, automotive and sporting goods.
Shape and spin determination of Barbarian asteroids
Context. The so-called Barbarian asteroids share peculiar, but common polarimetric properties, probably related to both their shape and composition. They are named after (234) Barbara, the first on which such properties were identified. As has been suggested, large scale topographic features could play a role in the polarimetric response, if the shapes of Barbarians are particularly irregular and present a variety of scattering/incidence angles. This idea is supported by the shape of (234) Barbara, that appears to be deeply excavated by wide concave areas revealed by photometry and stellar occultations. Aims. With these motivations, we started an observation campaign to characterise the shape and rotation properties of Small Main- Belt Asteroid Spectroscopic Survey (SMASS) type L and Ld asteroids. As many of them show long rotation periods, we activated a worldwide network of observers to obtain a dense temporal coverage. Methods. We used light-curve inversion technique in order to determine the sidereal rotation periods of 15 asteroids and the con- vergence to a stable shape and pole coordinates for 8 of them. By using available data from occultations, we are able to scale some shapes to an absolute size. We also study the rotation periods of our sample looking for confirmation of the suspected abundance of asteroids with long rotation periods. Results. Our results show that the shape models of our sample do not seem to have peculiar properties with respect to asteroids with similar size, while an excess of slow rotators is most probably confirmed.
A satellite orbit drift in binary near-Earth asteroids (66391) 1999 KW4 and (88710) 2001 SL9 -- Indication of the BYORP effect
We obtained thorough photometric observations of two binary near-Earth asteroids (66391) Moshup = 1999 KW4 and (88710) 2001 SL9 taken from 2000 to 2019 and derived physical and dynamical properties of the binary systems. We found that the data for 1999 KW4 are inconsistent with a constant orbital period and we obtained unique solution with a quadratic drift of the mean anomaly of the satellite of -0.65 +/- 0.16 deg/yr2 (all quoted uncertainties are 3sigma). This means that the semimajor axis of the mutual orbit of the components of this binary system increases in time with a mean rate of 1.2 +/- 0.3 cm/yr. The data for 2001 SL9 are also inconsistent with a constant orbital period and we obtained two solutions for the quadratic drift of the mean anomaly: 2.8 +/- 0.2 and 5.2 +/- 0.2 deg/yr2, implying that the semimajor axis of the mutual orbit of the components decreases in time with a mean rate of -2.8 +/- 0.2 or -5.1 +/- 0.2 cm/yr for the two solutions, respectively. The expanding orbit of 1999 KW4 may be explained by mutual tides interplaying with binary YORP (BYORP) effect (McMahon and Scheeres, 2010). However, a modeling of the BYORP drift using radar-derived shapes of the binary components predicted a much higher value of the orbital drift than the observed one. It suggests that either the radar-derived shape model of the secondary is inadequate for computing the BYORP effect, or the present theory of BYORP overestimates it. It is possible that the BYORP coefficient has instead an opposite sign than predicted; in that case, the system may be moving into an equilibrium between the BYORP and the tides. In the case of 2001 SL9, the BYORP effect is the only known physical mechanism that can cause the inward drift of its mutual orbit.
An anisotropic distribution of spin vectors in asteroid families
Current amount of ~500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. The remaining models are adopted from the DAMIT database or the literature. We revise the preliminary family membership identification by the HCM method according to several additional criteria - taxonomic type, color, albedo, maximum Yarkovsky semi-major axis drift and the consistency with the size-frequency distribution of each family, and consequently we remove interlopers. We then present the spin-vector distributions for eight asteroidal families. We use a combined orbital- and spin-evolution model to explain the observed spin-vector properties of objects among collisional families. In general, we observe for studied families similar trends in the (a_p, \\beta) space: (i) larger asteroids are situated in the proximity of the center of the family; (ii) asteroids with \\beta>0{\\deg} are usually found to the right from the family center; (iii) on the other hand, asteroids with \\beta<0{\\deg} to the left from the center; (iv) majority of asteroids have large pole-ecliptic latitudes (|\\beta|\\gtrsim 30{\\deg}); and finally (v) some families have a statistically significant excess of asteroids with \\beta>0{\\deg} or \\beta<0{\\deg}. Our numerical simulation of the long-term evolution of a collisional family is capable of reproducing well the observed spin-vector properties. Using this simulation, we also independently constrain the age of families Flora (1.0\\pm0.5 Gyr) and Koronis (2.5-4 Gyr).
Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution
The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.