Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Durnford, Dion G."
Sort by:
Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes
by
Neilson, Jonathan A. D.
,
Durnford, Dion G.
in
autotrophs
,
Biochemistry
,
Biomedical and Life Sciences
2010
Eukaryotes acquired photosynthetic metabolism over a billion years ago, and during that time the light-harvesting antennae have undergone significant structural and functional divergence. The antenna systems are generally used to harvest and transfer excitation energy into the reaction centers to drive photosynthesis, but also have the dual role of energy dissipation. Phycobilisomes formed the first antenna system in oxygenic photoautotrophs, and this soluble protein complex continues to be the dominant antenna in extant cyanobacteria, glaucophytes, and red algae. However, phycobilisomes were lost multiple times during eukaryotic evolution in favor of a thylakoid membrane-integral light-harvesting complex (LHC) antenna system found in the majority of eukaryotic taxa. While photosynthesis spread across different eukaryotic kingdoms via endosymbiosis, the antenna systems underwent extensive modification as photosynthetic groups optimized their light-harvesting capacity and ability to acclimate to changing environmental conditions. This review discusses the different classes of LHCs within photosynthetic eukaryotes and examines LHC diversification in different groups in a structural and functional context.
Journal Article
Tracing the Evolution of the Light-Harvesting Antennae in Chlorophyll a/b-Containing Organisms
by
Koziol, Adam G
,
Borza, Tudor
,
Keeling, Patrick
in
Acetabularia acetabulum
,
Amino Acid Sequence
,
antennae
2007
The light-harvesting complexes (LHCs) of land plants and green algae have essential roles in light capture and photoprotection. Though the functional diversity of the individual LHC proteins are well described in many land plants, the extent of this family in the majority of green algal groups is unknown. To examine the evolution of the chlorophyll a/b antennae system and to infer its ancestral state, we initiated several expressed sequence tag projects from a taxonomically broad range of chlorophyll a/b-containing protists. This included representatives from the Ulvophyceae (Acetabularia acetabulum), the Mesostigmatophyceae (Mesostigma viride), and the Prasinophyceae (Micromonas sp.), as well as one representative from each of the Euglenozoa (Euglena gracilis) and Chlorarachniophyta (Bigelowiella natans), whose plastids evolved secondarily from a green alga. It is clear that the core antenna system was well developed prior to green algal diversification and likely consisted of the CP29 (Lhcb4) and CP26 (Lhcb5) proteins associated with photosystem II plus a photosystem I antenna composed of proteins encoded by at least Lhca3 and two green algal-specific proteins encoded by the Lhca2 and 9 genes. In organisms containing secondary plastids, we found no evidence for orthologs to the plant/algal antennae with the exception of CP29. We also identified PsbS homologs in the Ulvophyceae and the Prasinophyceae, indicating that this distinctive protein appeared prior to green algal diversification. This analysis provides a snapshot of the antenna systems in diverse green algae, and allows us to infer the changing complexity of the antenna system during green algal evolution.
Journal Article
Long-term survival of Chlamydomonas reinhardtii during conditional senescence
2021
Chlamydomonas reinhardtii undergoes conditional senescence when grown in batch culture due to nutrient limitation. Here, we explored plastid and photo-physiological adaptations in Chlamydomonas reinhardtii during a long-term ageing experiment by methodically sampling them over 22 weeks. Following exponential growth, Chlamydomonas entered an extended declining growth phase where cells continued to divide, although at a lower rate. Ultimately, this ongoing division was fueled by the recycling of macromolecules that was obvious in the rapidly declining protein and chlorophyll content in the cell during this phase. This process was sufficient to maintain a high level of cell viability as the culture entered stationary phase. Beyond that the cell viability starts to plummet. During the turnover of macromolecules after exponential growth that saw RuBisCO levels drop, the LHCII antenna was relatively stable. This, along with the upregulation of the light stress-related proteins (LHCSR), contributes to an efficient energy dissipation mechanism to protect the ageing cells from photooxidative stress during the senescence process. Ultimately, viability dropped to about 7% at 22 weeks in a batch culture. We anticipate that this research will help further understand the various acclimation strategies carried out by Chlamydomonas to maximize survival under conditional senescence.
Journal Article
Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs
2012
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote–eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte
Guillardia theta
and the chlorarachniophyte
Bigelowiella natans
. Both genomes have >21,000 protein genes and are intron rich, and
B. natans
exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
Sequencing the nuclear genomes of
Guillardia theta
and
Bigelowiella natans
, transitional forms in the endosymbiotic acquisition of photosynthesis by engulfment of certain eukaryotic algae, reveals unprecedented alternative splicing for a single-celled organism (
B. natans
) and extensive genetic and biochemical mosaicism, shedding light on why nucleomorphs persist in these species but not other algae.
Evolutionarily complex algal genomes revealed
This paper presents the sequences of the nuclear genomes of two eukaryotic microbes of remarkable genetic and cellular complexity,
Guillardia
and
Bigelowiella
. These algae are transitional forms in the endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae, and possess four genomes: mitochondrial and plastid (chloroplast) genomes, a nuclear genome of host origin and a miniaturized 'nucleomorph' genome of endosymbiotic origin. Analyses reveal unprecedented alternative splicing for a single-celled organism, and extensive genetic and biochemical mosaicism. Whereas the mitochondrion-to-nucleus gene transfer continues in both organisms, plastid-to-nucleus and nucleomorph-to-nucleus transfers have ceased, explaining nucleomorph persistence.
Journal Article
Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants
2012
The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.
Journal Article
Plastid regulation of Lhcb1 transcription in the chlorophyte alga Dunaliella tertiolecta
by
Durnford, D.G
,
Chen, Y.B
,
Koblizek, M
in
Acclimatization
,
Base Sequence
,
Bioenergetics and Photosynthesis
2004
We identify four novel DNA-binding complexes in the nuclear-encoded Lhcb1 promoter of the chlorophyte alga Dunaliella tertiolecta that are regulated by photosynthetic pathways in the plastid. The binding activities of three of the complexes were positively correlated with time-dependent changes in Lhcb1 transcript abundance, implicating their roles as transcriptional enhancers in a retrograde signal transduction pathway. Using a combination of inhibitors, uncouplers, and antimycin A, and by following the kinetic pattern of gene regulation, we infer two different sensors in the signal transduction pathway. On short time scales of 0.5 to about 4 h, the transthylakoid membrane potential appears to be a critical determinant of gene expression, whereas on time scales of 8 h or longer, the redox state of the plastoquinone pool becomes increasingly more important. The differentiation of these two types of signals was observed in parallel effects on gene transcription and on the patterns of DNA-binding activities in the Lhcb1 promoter. These signals appear to be transduced at the nuclear level via a coordinated ensemble of DNA-binding complexes located between -367 and -188 bp from the start codon of the gene. The regulation of these elements allows the cell to up- or down-regulate the expression on Lhcb1 in response to changes in irradiance.
Journal Article
Euglena Light-Harvesting Complexes Are Encoded by Multifarious Polyprotein mRNAs that Evolve in Concert
2008
Light-harvesting complexes (LHCs) are a superfamily of chlorophyll- and carotenoid-binding proteins that are responsible for the capture of light energy and its transfer to the photosynthetic reaction centers. Unlike those of most eukaryotes, the LHCs of Euglena gracilis are translated from large mRNAs, producing polyprotein precursors consisting of multiple concatenated LHC subunits that are separated by conserved decapeptide linkers. These precursors are posttranslationally targeted to the chloroplast and cleaved into individual proteins. We analyzed expressed sequence tags from Euglena to further characterize the structural features of the LHC polyprotein-coding genes and to examine the evolution of this multigene family. Of the 19 different LHC transcriptional units we detected, 17 encoded polyproteins composed of both tandem and nontandem repeats of LHC subunits; organizations that likely occurred through unequal crossing-over. Of the 2 nonpolyprotein-encoding LHC transcripts detected, 1 evolved from the truncation of a polyprotein-coding gene. Duplication of LHC polyprotein-coding genes was particularly important in the LHCI gene family where multiple paralogous sequences were detected. Intriguingly, several of the individual LHC-coding subunits both within and between transcriptional units appeared to be evolving in concert, suggesting that gene conversion has been a significant mechanism for LHC evolution in Euglena. [PUBLICATION ABSTRACT]
Journal Article
A Rapid and Simple Bioassay Method for Herbicide Detection
2008
Xiu-Qing Li1, Alan Ng2, Russell King1, Dion G. Durnford2 1Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, NB, E3B 4Z7, Canada. 2Department of Biology, University of New Brunswick, Fredericton, NB, E3B 6E1, Canada. Abstract Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn--agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2-3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination.
Journal Article
Chloroplast redox regulation of nuclear gene transcription during photoacclimation
1997
The role of the redox state of ferredoxin/thioredoxin within the chloroplast is well established for the feedback regulation of enzyme activity in the Calvin cycle. However, evidence has emerged also suggesting that chloroplast electron transport components regulate plastid and nuclear gene expression. Using the unicellular green alga, Dunaliella tertiolecta, as a model organism, we have shown that the cell acclimates to changes in growth irradiance by altering the abundance and activities of photosynthetic components, in particular the light harvesting complexes (LHC). Pharmacological data suggests that light intensity is sensed through the redox status of the plastoquinone pool leading to the regulation of nuclear encoded genes, such as Lhcb. This signal may be transduced through a redox regulated protein kinase that (in)directly interacts with the nuclear transcription apparatus. The redox state of the plastoquinone pool seems to play a pivotal role in sensing cellular energy status and in regulating photosynthetic capacity. Other cellular pathways, including carbon fixation, carbohydrate metabolism and nutrient assimilation have been shown to have feedback influences on photosynthesis, that may be sensed by the redox state of the plastoquinone pool.[PUBLICATION ABSTRACT]
Journal Article
Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs
by
Maier, Uwe G.
,
Ball, Steven G.
,
Coutinho, Pedro
in
BASIC BIOLOGICAL SCIENCES
,
comparative genomics
2012
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have 21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
Journal Article