Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,262
result(s) for
"Dynes, S"
Sort by:
Mitigating calibration errors from mutual coupling with time-domain filtering of 21 cm cosmological radio observations
2024
The 21 cm transition from neutral Hydrogen promises to be the best observational probe of the Epoch of Reionisation (EoR). This has led to the construction of low-frequency radio interferometric arrays, such as the Hydrogen Epoch of Reionization Array (HERA), aimed at systematically mapping this emission for the first time. Precision calibration, however, is a requirement in 21 cm radio observations. Due to the spatial compactness of HERA, the array is prone to the effects of mutual coupling, which inevitably lead to non-smooth calibration errors that contaminate the data. When unsmooth gains are used in calibration, intrinsically spectrally-smooth foreground emission begins to contaminate the data in a way that can prohibit a clean detection of the cosmological EoR signal. In this paper, we show that the effects of mutual coupling on calibration quality can be reduced by applying custom time-domain filters to the data prior to calibration. We find that more robust calibration solutions are derived when filtering in this way, which reduces the observed foreground power leakage. Specifically, we find a reduction of foreground power leakage by 2 orders of magnitude at k=0.5.
Investigating Mutual Coupling in the Hydrogen Epoch of Reionization Array and Mitigating its Effects on the 21-cm Power Spectrum
2024
Interferometric experiments designed to detect the highly redshifted 21-cm signal from neutral hydrogen are producing increasingly stringent constraints on the 21-cm power spectrum, but some k-modes remain systematics-dominated. Mutual coupling is a major systematic that must be overcome in order to detect the 21-cm signal, and simulations that reproduce effects seen in the data can guide strategies for mitigating mutual coupling. In this paper, we analyse 12 nights of data from the Hydrogen Epoch of Reionization Array and compare the data against simulations that include a computationally efficient and physically motivated semi-analytic treatment of mutual coupling. We find that simulated coupling features qualitatively agree with coupling features in the data; however, coupling features in the data are brighter than the simulated features, indicating the presence of additional coupling mechanisms not captured by our model. We explore the use of fringe-rate filters as mutual coupling mitigation tools and use our simulations to investigate the effects of mutual coupling on a simulated cosmological 21-cm power spectrum in a \"worst case\" scenario where the foregrounds are particularly bright. We find that mutual coupling contaminates a large portion of the \"EoR Window\", and the contamination is several orders-of-magnitude larger than our simulated cosmic signal across a wide range of cosmological Fourier modes. While our fiducial fringe-rate filtering strategy reduces mutual coupling by roughly a factor of 100 in power, a non-negligible amount of coupling cannot be excised with fringe-rate filters, so more sophisticated mitigation strategies are required.
Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization
We report the detection of a transiting Earth-size planet around GJ 357, a nearby M2.5V star, using data from the Transiting Exoplanet Survey Satellite (TESS). GJ 357 b (TOI-562.01) is a transiting, hot, Earth-sized planet (Teq=525+-11 K) with a radius of Rb=1.217+-0.084 Re and an orbital period of Pb=3.93 d. Precise stellar radial velocities from CARMENES and PFS, as well as archival data from HIRES, UVES, and HARPS also display a 3.93-day periodicity, confirming the planetary nature and leading to a planetary mass of Mb=1.84+-0.31 Me. In addition to the radial velocity signal for GJ 357 b, more periodicities are present in the data indicating the presence of two further planets in the system: GJ 357 c, with a minimum mass of Mc=3.40+-0.46 Me in a 9.12 d orbit, and GJ 357 d, with a minimum mass of Md=6.1+-1.0 Me in a 55.7 d orbit inside the habitable zone. The host is relatively inactive and exhibits a photometric rotation period of Prot=78+-2 d. GJ 357 b is to date the second closest transiting planet to the Sun, making it a prime target for further investigations such as transmission spectroscopy. Therefore, GJ 357 b represents one of the best terrestrial planets suitable for atmospheric characterization with the upcoming JWST and ground-based ELTs.
Overcoming the rate–distance limit of quantum key distribution without quantum repeaters
by
Yuan, Z. L.
,
Dynes, J. F.
,
Shields, A. J.
in
639/624/1075/187
,
639/624/400/482
,
639/766/483/2802
2018
Quantum key distribution (QKD)
1
,
2
allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre
3
and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration
4
. Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters
5
–
7
, is overcoming the fundamental rate–distance limit of QKD
8
. This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel
9
that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are ‘twins’ and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate–distance limit of QKD and greatly extending the range of secure quantum communications.
Twin optical fields enable a form of quantum key distribution that can exceed the secret-key capacity without using quantum repeaters and that has security independent of the measuring devices.
Journal Article
Quantum key distribution without detector vulnerabilities using optically seeded lasers
2016
Quantum cryptography immune from detector attacks is realized by the development of a source of indistinguishable laser pulses based on optically seeded gain-switched lasers. Key rates exceeding 1 Mb s
−1
are demonstrated in the finite-size regime.
Security in quantum cryptography
1
,
2
is continuously challenged by inventive attacks
3
,
4
,
5
,
6
,
7
targeting the real components of a cryptographic set-up, and duly restored by new countermeasures
8
,
9
,
10
to foil them. Owing to their high sensitivity and complex design, detectors are the most frequently attacked components. It was recently shown that two-photon interference
11
from independent light sources can be used to remove any vulnerability from detectors
12
,
13
. This new form of detection-safe quantum key distribution (QKD), termed measurement-device-independent
13
(MDI), has been experimentally demonstrated
13
,
14
,
15
,
16
,
17
,
18
,
19
but with modest key rates. Here, we introduce a new pulsed laser seeding technique to obtain high-visibility interference from gain-switched lasers and thereby perform MDI-QKD with unprecedented key rates in excess of 1 megabit per second in the finite-size regime. This represents a two to six orders of magnitude improvement over existing implementations and supports the new scheme as a practical resource for secure quantum communications.
Journal Article
Experimental quantum key distribution beyond the repeaterless secret key capacity
2019
Quantum communications promise to revolutionize the way information is exchanged and protected. Unlike their classical counterpart, they are based on dim optical pulses that cannot be amplified by conventional optical repeaters. Consequently, they are heavily impaired by propagation channel losses, confining their transmission rate and range below a theoretical limit known as repeaterless secret key capacity. Overcoming this limit with today’s technology was believed to be impossible until the recent proposal of a scheme that uses phase-coherent optical signals and an auxiliary measuring station to distribute quantum information. Here, we experimentally demonstrate such a scheme for the first time and over significant channel losses, in excess of 90 dB. In the high loss regime, the resulting secure key rate exceeds the repeaterless secret key capacity, a result never achieved before. This represents a major step in promoting quantum communications as a dependable resource in today’s world.A proof-of-principle experiment on twin-field quantum key distribution is demonstrated. The key rate overcomes the repeaterless secret key capacity bound limit at channel losses of 85 dB, corresponding to 530 km of ultralow-loss optical fibre.
Journal Article
Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution
2015
In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us to quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.
Journal Article
A photonic integrated quantum secure communication system
by
Marangon, Davide G
,
Woodward, Robert I
,
Shields, Andrew J
in
Communications systems
,
Data encryption
,
Error correction
2021
Photonic integrated circuits hold great promise in enabling the practical wide-scale deployment of quantum communications; however, despite impressive experiments of component functionality, a fully operational quantum communication system using photonic chips is yet to be demonstrated. Here we demonstrate an entirely standalone secure communication system based on photonic integrated circuits—assembled into compact modules—for quantum random number generation and quantum key distribution at gigahertz clock rates. The bit values, basis selection and decoy pulse intensities used for quantum key distribution are chosen at random, and are based on the output of a chip-based quantum random number generator operating at 4 Gb s–1. Error correction and privacy amplification are performed in real time to produce information-theoretic secure keys for a 100 Gb s–1 line speed data encryption system. We demonstrate long-term continuous operation of the quantum secured communication system using feedback controls to stabilize the qubit phase and propagation delay over metropolitan fibre lengths. These results mark an important milestone for the realistic deployment of quantum communications based on quantum photonic chips.Quantum photonic integrated circuits for a standalone quantum secure communication system are developed and packaged into pluggable interconnects. The system is interfaced with 100 Gb s–1 data encryptors and its performance is evaluated over 10 km to 50 km fibre links.
Journal Article