Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
102 result(s) for "Dytman, S A"
Sort by:
Probing nuclear effects with neutrino-induced charged-current neutral pion production
We study neutrino-induced charged-current (CC) \\(\\pi^0\\) production on carbon nuclei using events with fully imaged final-state proton-\\(\\pi^0\\) systems. Novel use of final-state correlations based on transverse kinematic imbalance enable the first measurements of the struck nucleon's Fermi motion, of the intranuclear momentum transfer (IMT) dynamics, and of the final-state hadronic momentum configuration in neutrino pion production. Event distributions are presented for i) the momenta of neutrino-struck neutrons below the Fermi surface, ii) the direction of missing transverse momentum characterizing the strength of IMT, and iii) proton-pion momentum imbalance with respect to the lepton scattering plane. The observed Fermi motion and IMT strength are compared to the previous MINERvA measurement of neutrino CC quasielastic-like production. The measured shapes and absolute rates of these distributions, as well as the cross-section asymmetries show tensions with predictions from current neutrino generator models.
Simultaneous measurement of muon neutrino quasielastic-like cross sections on CH, C, water, Fe, and Pb as a function of muon kinematics at MINERvA
This paper presents the first simultaneous measurement of the quasielastic-like neutrino-nucleus cross sections on C, water, Fe, Pb and scintillator (hydrocarbon or CH) as a function of longitudinal and transverse muon momentum. The ratio of cross sections per nucleon between Pb and CH is always above unity and has a characteristic shape as a function of transverse muon momentum that evolves slowly as a function of longitudinal muon momentum. The ratio is constant versus longitudinal momentum within uncertainties above a longitudinal momentum of 4.5GeV/c. The cross section ratios to CH for C, water, and Fe remain roughly constant with increasing longitudinal momentum, and the ratios between water or C to CH do not have any significant deviation from unity. Both the overall cross section level and the shape for Pb and Fe as a function of transverse muon momentum are not reproduced by current neutrino event generators. These measurements provide a direct test of nuclear effects in quasielastic-like interactions, which are major contributors to long-baseline neutrino oscillation data samples.
Use of Neutrino Scattering Events with Low Hadronic Recoil to Inform Neutrino Flux and Detector Energy Scale
Charged-current neutrino interactions with low hadronic recoil (\"low-nu\") have a cross-section that is approximately constant versus neutrino energy. These interactions have been used to measure the shape of neutrino fluxes as a function of neutrino energy at accelerator-based neutrino experiments such as CCFR, NuTeV, MINOS and MINERvA. In this paper, we demonstrate that low-nu events can be used to measure parameters of neutrino flux and detector models and that utilization of event distributions over the upstream detector face can discriminate among parameters that affect the neutrino flux model. From fitting a large sample of low-nu events obtained by exposing MINERvA to the NuMI medium-energy beam, we find that the best-fit flux parameters are within their a priori uncertainties, but the energy scale of muons reconstructed in the MINOS detector is shifted by 3.6% (or 1.8 times the a priori uncertainty on that parameter). These fit results are now used in all MINERvA cross-section measurements, and this technique can be applied by other experiments operating at MINERvA energies, such as DUNE.
Constraint of the MINERvA Medium Energy Neutrino Flux using Neutrino-Electron Elastic Scattering
Elastic neutrino scattering on electrons is a precisely-known purely leptonic process that provides a standard candle for measuring neutrino flux in conventional neutrino beams. Using a total sample of 810 neutino-electron scatters after background subtraction, the measurement reduces the normalization uncertainty on the muon neutrino NuMI flux between 2 and 20 GeV from 7.5% to 3.9%. This is the most precise measurement of neutrino-electron scattering to date, will reduce uncertainties on MINERvA's absolute cross section measurements, and demonstrates a technique that can be used in future neutrino beams such as LBNF.
Tuning the GENIE Pion Production Model with MINERvA Data
Faced with unresolved tensions between neutrino interaction measurements at few-GeV neutrino energies, current experiments are forced to accept large systematic uncertainties to cover discrepancies between their data and model predictions. In this paper, the widely used pion production model in GENIE is compared to four MINERvA charged current pion production measurements using NUISANCE. Tunings, ie, adjustments of model parameters, to help match GENIE to MINERvA and older bubble chamber data are presented here. We find that scattering off nuclear targets as measured in MINERvA is not in good agreement with scattering off nucleon (hydrogen or deuterium) targets in the bubble chamber data. An additional ad hoc correction for the low-\\(Q^2\\) region, where collective effects are expected to be large, is also presented. While these tunings and corrections improve the agreement of GENIE with the data, the modeling is imperfect. The development of these tunings within the NUISANCE frameworkallows for straightforward extensions to other neutrino event generators and models, and allows omitting and including new data sets as they become available.
Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current \\(\\nu_\\mu\\) interactions is combined with muon kinematics to permit separation of the quasielastic and \\(\\Delta\\)(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and \\(\\Delta\\) resonance processes are needed to describe the data. The data in this kinematic region also has an enhanced population of multi-proton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.
Neutron measurements from anti-neutrino hydrocarbon reactions
Charged-current anti-neutrino interactions on hydrocarbon scintillator in the MINERvA detector are used to study activity from their final-state neutrons. To ensure that most of the neutrons are from the primary interaction, rather than hadronic reinteractions in the detector, the sample is limited to momentum transfers below 0.8 GeV/c. From 16,129 interactions, 15,246 neutral particle candidates are observed. The reference simulation predicts 64\\% of these candidates are due to neutrons from the anti-neutrino interaction directly, but also overpredicts the number of candidates by 15\\% overall, which is beyond the standard uncertainty estimates for models of neutrino interactions and neutron propagation in the detector. Using the measured distributions for energy deposition, time of flight, position, and speed, we explore the sensitivity to the details those two aspects of the models. We also use multiplicity distributions to evaluate the presence of a two-nucleon knockout process. These results provide critical new information toward a complete description of the hadronic final state of neutrino interactions, which is vital to neutrino oscillation experiments.
Antineutrino Charged-Current reactions on Hydrocarbon with Low Momentum Transfer
We report on multinucleon effects in low momentum transfer (\\(< 0.8\\) GeV/c) anti-neutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, \\(\\Delta\\) resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for antineutrino scattering off nuclei.
Cross sections for neutrino and antineutrino induced pion production on hydrocarbon in the few-GeV region using MINERvA
Separate samples of charged-current pion production events representing two semi-inclusive channels \\(\\nu_\\mu\\)-CC(\\(\\pi^{+}\\)) and \\(\\bar{\\nu}_{\\mu}\\)-CC(\\(\\pi^{0}\\)) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributions in kinematic variables based upon \\(\\mu^{\\pm}\\)-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer \\(Q^2\\), are reported, and cross sections versus neutrino energy are obtained. Comparisons with predictions of current neutrino event generators are used to clarify the role of the \\(\\Delta(1232)\\) and higher-mass baryon resonances in CC pion production and to show the importance of pion final-state interactions. For the \\(\\nu_\\mu\\)-CC(\\(\\pi^{+}\\)) (\\(\\bar{\\nu}_{\\mu}\\)-CC(\\(\\pi^{0}\\))) sample, the absolute data rate is observed to lie below (above) the predictions of some of the event generators by amounts that are typically 1-to-2 \\(\\sigma\\). However the generators are able to reproduce the shapes of the differential cross sections for all kinematic variables of either data set.
Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA
We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy range \\(E_{\\nu} <\\) 6GeV.