Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Early, Angela M."
Sort by:
A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf) . RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein ( Pf CSP). Although most attention has focused on antibodies to repeat motifs on Pf CSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P . falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.
Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance
Antimalarial drug resistance has historically arisen through convergent de novo mutations in Plasmodium falciparum parasite populations in Southeast Asia and South America. For the past decade in Southeast Asia, artemisinins, the core component of first-line antimalarial therapies, have experienced delayed parasite clearance associated with several pfk13 mutations, primarily C580Y. We report that mutant pfk13 has emerged independently in Guyana, with genome analysis indicating an evolutionary origin distinct from Southeast Asia. Pfk13 C580Y parasites were observed in 1.6% (14/854) of samples collected in Guyana in 2016–2017. Introducing pfk13 C580Y or R539T mutations by gene editing into local parasites conferred high levels of in vitro artemisinin resistance. In vitro growth competition assays revealed a fitness cost associated with these pfk13 variants, potentially explaining why these resistance alleles have not increased in frequency more quickly in South America. These data place local malaria control efforts at risk in the Guiana Shield. All recommended treatments against malaria include a drug called artemisinin or some of its derivatives. However, there are concerns that Plasmodium falciparum, the parasite that causes most cases of malaria, will eventually develop widespread resistance to the drug. A strain of P. falciparum partially resistant to artemisinin was seen in Cambodia in 2008, and it has since spread across Southeast Asia. The resistance appears to be frequently linked to a mutation known as pfk13 C580Y. Southeast Asia and Amazonia are considered to be hotspots for antimalarial drug resistance, and the pfk13 C580Y mutation was detected in the South American country of Guyana in 2010. To examine whether the mutation was still circulating in this part of the world, Mathieu et al. collected and analyzed 854 samples across Guyana between 2016 and 2017. Overall, 1.6% of the samples had the pfk13 C580Y mutation, but this number was as high as 8.8% in one region. Further analyses revealed that the mutation in Guyana had not spread from Southeast Asia, but that it had occurred in Amazonia independently. To better understand the impact of the pfk13 C580Y mutation, Mathieu et al. introduced this genetic change into non-resistant parasites from a country neighbouring Guyana. As expected, the mutation made P. falciparum highly resistant to artemisinin, but it also slowed the growth rate of the parasite. This disadvantage may explain why the mutation has not spread more rapidly through Guyana in recent years. Artemisinin and its derivatives are always associated with other antimalarial drugs to slow the development of resistance; there are concerns that reduced susceptibility to artemisinin leads to the parasites becoming resistant to the partner drugs. Further research is needed to evaluate how the pfk13 C580Y mutation affects the parasite’s response to the typical combination of drugs that are given to patients.
Tracking Plasmodium falciparum antimalarial resistance markers during a malaria pre-elimination period in the Pacific coast of South America
Antimalarial resistance in Plasmodium falciparum is a public health problem in the fight against malaria in Ecuador. Characterizing the molecular epidemiology of drug resistance genes helps to understand the emergence and spread of resistant parasites. In this study, the effects of drug pressure and human migration on antimalarial resistance in P. falciparum were evaluated. Sixty-seven samples from northwestern Ecuador from the 2019–2021 period were analyzed. SNPs in Pfcrt , Pfdhps , Pfdhfr , Pfmdr-1 , Pfk13 and Pfaat1 were identified by Sanger sequencing and whole-genome sequencing. A comparison of the frequencies of the haplotypes was made with data from the 2013–2015 period. Also, nucleotide and haplotype diversity were calculated. The frequencies of the mutant haplotypes, CVM ET in Pfcrt and C I C N I in Pfdhfr increased and became dominant (100% of infections) in Esmeraldas. NED F S D F Y in Pfmdr-1 was detected for the first time, while two wild-type haplotypes, SAKAA in Pfdhps and MYRIC in Pfk13, remained in 100% of samples. Interestingly, the A16 V mutation in Pfdhfr that gives resistance to proguanil is reported in Ecuador for the first time. In conclusion, parasites resistant to chloroquine ( Pfcrt ) and pyrimethamine ( Pfdhfr ) increased in recent years, while parasites sensitive to sulfadoxine ( Pfdhps ) and artemisinin ( Pfk13 ) prevail in Ecuador. These results suggest that the current first-line treatment (artemether-lumefantrine + primaquine) is still useful against P. falciparum .
Temporal and spatial dynamics of Plasmodium falciparum clonal lineages in Guyana
Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. In low transmission settings, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation ( pfk13 C580Y) has been observed. We performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016–2021). We characterized the relatedness between each pair of monoclonal infections (n = 1,409) through estimation of identity-by-descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 multi-isolate clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance ( pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3 , an epistatic interaction associated with piperaquine resistance. We additionally observed 61 nonsynonymous substitutions that increased markedly in frequency over the study period as well as a novel pfk13 mutation (G718S). However, P . falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions, given that clones carrying drug resistance polymorphisms do not demonstrate enhanced persistence or higher abundance than clones carrying polymorphisms of comparable frequency that are unrelated to resistance. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.
Dense time-course gene expression profiling of the Drosophila melanogaster innate immune response
Background Immune responses need to be initiated rapidly, and maintained as needed, to prevent establishment and growth of infections. At the same time, resources need to be balanced with other physiological processes. On the level of transcription, studies have shown that this balancing act is reflected in tight control of the initiation kinetics and shutdown dynamics of specific immune genes. Results To investigate genome-wide expression dynamics and trade-offs after infection at a high temporal resolution, we performed an RNA-seq time course on D. melanogaster with 20 time points post Imd stimulation. A combination of methods, including spline fitting, cluster analysis, and Granger causality inference, allowed detailed dissection of expression profiles, lead-lag interactions, and functional annotation of genes through guilt-by-association. We identified Imd-responsive genes and co-expressed, less well characterized genes, with an immediate-early response and sustained up-regulation up to 5 days after stimulation. In contrast, stress response and Toll-responsive genes, among which were Bomanins, demonstrated early and transient responses. We further observed a strong trade-off with metabolic genes, which strikingly recovered to pre-infection levels before the immune response was fully resolved. Conclusions This high-dimensional dataset enabled the comprehensive study of immune response dynamics through the parallel application of multiple temporal data analysis methods. The well annotated data set should also serve as a useful resource for further investigation of the D. melanogaster innate immune response, and for the development of methods for analysis of a post-stress transcriptional response time-series at whole-genome scale.
Drosophila Genotype Influences Commensal Bacterial Levels
Host genotype can influence the composition of the commensal bacterial community in some organisms. Composition, however, is only one parameter describing a microbial community. Here, we test whether a second parameter-abundance of bacteria-is a heritable trait by quantifying the presence of four commensal bacterial strains within 36 gnotobiotic inbred lines of Drosophila melanogaster. We find that D. melanogaster genotype exerts a significant effect on microbial levels within the fly. When introduced as monocultures into axenic flies, three of the four bacterial strains were reliably detected within the fly. The amounts of these different strains are strongly correlated, suggesting that the host regulates commensal bacteria through general, not bacteria-specific, means. While the correlation does not appear to be driven by simple variation in overall gut dimensions, a genetic association study suggests that variation in commensal bacterial load may largely be attributed to physical aspects of host cell growth and development.
Resolving drug selection and migration in an inbred South American Plasmodium falciparum population with identity-by-descent analysis
The human malaria parasite Plasmodium falciparum is globally widespread, but its prevalence varies significantly between and even within countries. Most population genetic studies in P . falciparum focus on regions of high transmission where parasite populations are large and genetically diverse, such as sub-Saharan Africa. Understanding population dynamics in low transmission settings, however, is of particular importance as these are often where drug resistance first evolves. Here, we use the Pacific Coast of Colombia and Ecuador as a model for understanding the population structure and evolution of Plasmodium parasites in small populations harboring less genetic diversity. The combination of low transmission and a high proportion of monoclonal infections means there are few outcrossing events and clonal lineages persist for long periods of time. Yet despite this, the population is evolutionarily labile and has successfully adapted to changes in drug regime. Using newly sequenced whole genomes, we measure relatedness between 166 parasites, calculated as identity by descent (IBD), and find 17 distinct but highly related clonal lineages, six of which have persisted in the region for at least a decade. This inbred population structure is captured in more detail with IBD than with other common population structure analyses like PCA, ADMIXTURE, and distance-based trees. We additionally use patterns of intra-chromosomal IBD and an analysis of haplotypic variation to explore past selection events in the region. Two genes associated with chloroquine resistance, crt and aat1 , show evidence of hard selective sweeps, while selection appears soft and/or incomplete at three other key resistance loci ( dhps , mdr1 , and dhfr ). Overall, this work highlights the strength of IBD analyses for studying parasite population structure and resistance evolution in regions of low transmission, and emphasizes that drug resistance can evolve and spread in small populations, as will occur in any region nearing malaria elimination.
Contrasting genomic epidemiology between sympatric Plasmodium falciparum and Plasmodium vivax populations
The malaria parasites Plasmodium falciparum and Plasmodium vivax differ in key biological processes and associated clinical effects, but consequences on population-level transmission dynamics are difficult to predict. This co-endemic malaria study from Guyana details important epidemiological contrasts between the species by coupling population genomics (1396 spatiotemporally matched parasite genomes, primarily from 2020–21) with sociodemographic analysis (nationwide patient census from 2019). We describe how P. falciparum forms large, interrelated subpopulations that sporadically expand but generally exhibit restrained dispersal, whereby spatial distance and patient travel statistics predict parasite identity-by-descent (IBD). Case bias towards working-age adults is also strongly pronounced. P. vivax exhibits 46% higher average nucleotide diversity (π) and 6.5x lower average IBD. It occupies a wider geographic range, without evidence for outbreak-like expansions, only microgeographic patterns of isolation-by-distance, and weaker case bias towards adults. Possible latency-relapse effects also manifest in various analyses. For example, 11.0% of patients diagnosed with P. vivax in Greater Georgetown report no recent travel to endemic zones, and P. vivax clones recur in 11 of 46 patients incidentally sampled twice during the study. Polyclonality rate is also 2.1x higher than in P. falciparum , does not trend positively with estimated incidence, and correlates uniquely to selected demographics. We discuss possible underlying mechanisms and implications for malaria control. P. falciparum and vivax are responsible for most cases of malaria but are not genetically closely related and differ in their clinical and epidemiological impacts. In this study, the authors investigate the genomic and epidemiological characteristics of the two parasites in a co-endemic setting of Guyana.
Detection of low-density Plasmodium falciparum infections using amplicon deep sequencing
Background Deep sequencing of targeted genomic regions is becoming a common tool for understanding the dynamics and complexity of Plasmodium infections, but its lower limit of detection is currently unknown. Here, a new amplicon analysis tool, the Parallel Amplicon Sequencing Error Correction (PASEC) pipeline, is used to evaluate the performance of amplicon sequencing on low-density Plasmodium DNA samples. Illumina-based sequencing of two Plasmodium falciparum genomic regions ( CSP and SERA2 ) was performed on two types of samples: in vitro DNA mixtures mimicking low-density infections (1–200 genomes/μl) and extracted blood spots from a combination of symptomatic and asymptomatic individuals (44–653,080 parasites/μl). Three additional analysis tools—DADA2, HaplotypR, and SeekDeep—were applied to both datasets and the precision and sensitivity of each tool were evaluated. Results Amplicon sequencing can contend with low-density samples, showing reasonable detection accuracy down to a concentration of 5 Plasmodium genomes/μl. Due to increased stochasticity and background noise, however, all four tools showed reduced sensitivity and precision on samples with very low parasitaemia (< 5 copies/μl) or low read count (< 100 reads per amplicon). PASEC could distinguish major from minor haplotypes with an accuracy of 90% in samples with at least 30 Plasmodium genomes/μl, but only 61% at low Plasmodium concentrations (< 5 genomes/μl) and 46% at very low read counts (< 25 reads per amplicon). The four tools were additionally used on a panel of extracted parasite-positive blood spots from natural malaria infections. While all four identified concordant patterns of complexity of infection (COI) across four sub-Saharan African countries, COI values obtained for individual samples differed in some cases. Conclusions Amplicon deep sequencing can be used to determine the complexity and diversity of low-density Plasmodium infections. Despite differences in their approach, four state-of-the-art tools resolved known haplotype mixtures with similar sensitivity and precision. Researchers can therefore choose from multiple robust approaches for analysing amplicon data, however, error filtration approaches should not be uniformly applied across samples of varying parasitaemia. Samples with very low parasitaemia and very low read count have higher false positive rates and call for read count thresholds that are higher than current default recommendations.
Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation
Identifying how small molecules act to kill malaria parasites can lead to new “chemically validated” targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes Pf ACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and Pf ACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates Pf ACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of Pf ACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the Pf ACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability. Drug resistance to current antimalarials is rising and new drugs and targets are urgently needed. Here the authors identify Plasmodium falciparum acyl-CoA synthetase 10 as a new target whose inhibition leads to a decrease in triacylglycerols.