Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
98 result(s) for "East, E. William"
Sort by:
Dark photon vortex formation and dynamics
A bstract We study the formation and evolution of vortices in U(1) dark photon dark matter and dark photon clouds that arise through black hole superradiance. We show how the production of both longitudinal mode and transverse mode dark photon dark matter can lead to the formation of vortices. After vortex formation, the energy stored in the dark photon dark matter will be transformed into a large number of vortex strings, eradicating the coherent dark photon dark matter field. In the case where a dark photon magnetic field is produced, bundles of vortex strings are formed in a superheated phase transition, and evolve towards a configuration consisting of many string loops that are uncorrelated on large scales, analogous to a melting phase transition in condensed matter. In the process, they dissipate via dark photon and gravitational wave emission, offering a target for experimental searches. Vortex strings were also recently shown to form in dark photon superradiance clouds around black holes, and we discuss the dynamics and observational consequences of this phenomenon with phenomenologically motivated parameters. In that case, the string loops ejected from the superradiance cloud, apart from producing gravitational waves, are also quantised magnetic flux lines and can be looked for with magnetometers. We discuss the connection between the dynamics in these scenarios and similar vortex dynamics found in type II superconductors.
Nonlinear dynamics of flux compactification
A bstract We study the nonlinear evolution of unstable flux compactifications, applying numerical relativity techniques to solve the Einstein equations in D dimensions coupled to a q -form field and positive cosmological constant. We show that initially homogeneous flux compactifications are unstable to dynamically forming warped compactifications. In some cases, we find that the warping process can serve as a toy-model of slow-roll inflation, while in other instances, we find solutions that eventually evolve to a singular state. Analogous to dynamical black hole horizons, we use the geometric properties of marginally trapped surfaces to characterize the lower dimensional vacua in the inhomogeneous and dynamical settings we consider. We find that lower-dimensional vacua with a lower expansion rate are dynamically favoured, and in some cases find spacetimes that undergo a period of accelerated expansion followed by contraction.
Vortex String Formation in Black Hole Superradiance of a Dark Photon with the Higgs Mechanism
Black hole superradiance, which only relies on gravitational interactions, can provide a powerful probe of the existence of ultralight bosons that are weakly coupled to ordinary matter. However, as a boson cloud grows through superradiance, nonlinear effects from interactions with itself or other fields may become important. As a representative example of this, we use nonlinear evolutions to study black hole superradiance of a vector boson that attains a mass, via a coupling to a complex scalar, through the Higgs mechanism. For the cases considered, we find that the superradiant instability can lead to a transient period where the scalar field reaches its symmetry restoration value, leading to the formation of closed vortex strings, the temporary disruption of the exponential growth of the cloud, and an explosive outburst of energy. After the cloud loses sufficient mass, the superradiant growth resumes, and the cycle repeats. Thus, the black hole will be spun down but, potentially, at a much lower rate compared to when nonlinear effects are unimportant, and with the liberated energy going primarily into bosonic radiation instead of gravitational waves.
Starting inflation from inhomogeneous initial conditions with momentum
We investigate the circumstances under which cosmic inflation can arise from very inhomogeneous initial conditions using numerical relativity simulations. Previous studies have not considered cases with non-zero momentum density due to technical challenges with solving the coupled Einstein constraint equations. Here we address these, introducing and comparing several different ways of constructing cosmological initial conditions with inhomogeneous scalar field and time derivative profiles. We evolve such initial conditions with large inhomogeneities in both single- and two-field inflationary models. We study cases where the initial gradient and kinetic energy are much larger than the inflationary energy scale, and black holes can form, as well as cases where the initial scalar potential energy is comparable, as in scenarios where inflation occurs at nearly Planckian densities, finding large-field inflation to be generally robust. We consider examples of initial conditions where a large scalar field velocity towards non-inflationary values would prevent inflation from occurring in the homogeneous case, finding that the addition of large gradients in the scalar field can actually dilute this effect, with the increased expansion and non-vanishing restoring force leading to inflation.
Instability and backreaction of massive spin-2 fields around black holes
A massive spin-2 field can grow unstably around a black hole, giving rise to a potential probe of the existence of such fields. In this work, we use time-domain evolutions to study such instabilities. Considering the linear regime by solving the equations generically governing a massive tensor field on the background of a Kerr black hole, we find that black hole spin increases the growth rate and, most significantly, the mass range of the axisymmetric (azimuthal number \\(m=0\\)) instability, which takes the form of the Gregory-Laflamme black string instability for zero spin. We also consider the superradiant unstable modes with \\(1 \\leq m \\leq 3\\), extending previous results to higher spin-2 masses, black hole spins, and azimuthal numbers. We find that the superradiant modes grow slower than the \\(m=0\\) modes, except for a narrow range of high spins and masses, with \\(m=1\\) and 2 requiring a dimensionless black hole spin of \\(a_{\\rm BH}\\gtrsim 0.95\\) to be dominant. Thus, in most of the parameter space, the backreaction of the \\(m=0\\) instability must be taken into account when using black holes to constrain massive spin-2 fields. As a simple model of this, we consider nonlinear evolutions in quadratic gravity, in particular Einstein-Weyl gravity. We find that, depending on the initial perturbation, the black hole may approach zero mass with the curvature blowing up in finite time, or can saturate at a larger mass with a surrounding cloud of the ghost spin-2 field.
Generic initial data for binary boson stars
Binary boson stars can be used to model the nonlinear dynamics and gravitational wave signals of merging ultracompact, but horizonless, objects. However, doing so requires initial data satisfying the Hamiltonian and momentum constraints of the Einstein equations, something that has not yet been addressed. In this work, we construct constraint-satisfying initial data for a variety of binary boson star configurations. We do this using the conformal thin-sandwich formulation of the constraint equations, together with a specific choice for the matter terms appropriate for scalar fields. The free data is chosen based upon a superposition of isolated boson star solutions, but with several modifications designed to suppress the spurious oscillations in the stars that such an approach can lead to. We show that the standard approach to reducing orbital eccentricity can be applied to construct quasi-circular binary boson star initial data, reducing the eccentricity of selected binaries to the \\(\\sim 10^{-3}\\) level. Using these methods, we construct initial data for quasi-circular binaries with different mass-ratios and spins, including a configuration where the spin is misaligned with the orbital angular momentum, and where the dimensionless spins of the boson stars exceeds the Kerr bound. We evolve these to produce the first such inspiral-merger-ringdown gravitational waveforms for constraint-satisfying binary boson stars. Finally, we comment on how equilibrium equations for the scalar matter could be used to improve the construction of binary initial data, analogous to the approach used for quasi-equilibrium binary neutron stars.
Binary boson stars: Merger dynamics and formation of rotating remnant stars
Scalar boson stars have attracted attention as simple models for exploring the nonlinear dynamics of a large class of ultra compact and black hole mimicking objects. Here, we study the impact of interactions in the scalar matter making up these stars. In particular, we show the pivotal role the scalar phase and vortex structure play during the late inspiral, merger, and post-merger oscillations of a binary boson star, as well as their impact on the properties of the merger remnant. To that end, we construct constraint satisfying binary boson star initial data and numerically evolve the nonlinear set of Einstein-Klein-Gordon equations. We demonstrate that the scalar interactions can significantly affect the inspiral gravitational wave amplitude and phase, and the length of a potential hypermassive phase shortly after merger. If a black hole is formed after merger, we find its spin angular momentum to be consistent with similar binary black hole and binary neutron star merger remnants. Furthermore, we formulate a mapping that approximately predicts the remnant properties of any given binary boson star merger. Guided by this mapping, we use numerical evolutions to explicitly demonstrate, for the first time, that rotating boson stars can form as remnants from the merger of two non-spinning boson stars. We characterize this new formation mechanism and discuss its robustness. Finally, we comment on the implications for rotating Proca stars.
Dark photon vortex formation and dynamics
We study the formation and evolution of vortices in \\(U(1)\\) dark photon dark matter and dark photon clouds that arise through black hole superradiance. We show how the production of both longitudinal mode and transverse mode dark photon dark matter can lead to the formation of vortices. After vortex formation, the energy stored in the dark photon dark matter will be transformed into a large number of vortex strings, eradicating the coherent dark photon dark matter field. In the case where a dark photon magnetic field is produced, bundles of vortex strings are formed in a superheated phase transition, and evolve towards a configuration consisting of many string loops that are uncorrelated on large scales, analogous to a melting phase transition in condensed matter. In the process, they dissipate via dark photon and gravitational wave emission, offering a target for experimental searches. Vortex strings were also recently shown to form in dark photon superradiance clouds around black holes, and we discuss the dynamics and observational consequences of this phenomenon with phenomenologically motivated parameters. In that case, the string loops ejected from the superradiance cloud, apart from producing gravitational waves, are also quantised magnetic flux lines and can be looked for with magnetometers. We discuss the connection between the dynamics in these scenarios and similar vortex dynamics found in type II superconductors.
Binary neutron star mergers in Einstein-scalar-Gauss-Bonnet gravity
Binary neutron star mergers, which can lead to less massive black holes relative to other known astrophysical channels, have the potential to probe modifications to general relativity that arise at smaller curvature scales compared to more massive compact object binaries. As a representative example of this, here we study binary neutron star mergers in shift-symmetric Einstein-scalar-Gauss-Bonnet gravity using evolutions of the full, nonperturbative evolution equations. We find that the impact on the inspiral is small, even at large values of the modified gravity coupling (as expected, as neutron stars do not have scalar charge in this theory). However, postmerger there can be strong scalar effects, including radiation. When a black hole forms, it develops scalar charge, impacting the ringdown gravitational wave signal. In cases where a longer-lived remnant star persists postmerger, we find that the oscillations of the star source levels of scalar radiation similar to the black hole formation cases. In remnant stars, we further find that at coupling values comparable to the maximum value for which black hole solutions of the same mass exist, there is significant nonlinear enhancement in the scalar field, which if sufficiently large leads to a breakdown in the evolution, seemingly due to loss of hyperbolicity of the underlying equations.