Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
157 result(s) for "Eck, Thomas"
Sort by:
The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
The Aerosol Robotic Network (AERONET) Version 3 (V3) aerosol retrieval algorithm is described, which is based on the Version 2 (V2) algorithm with numerous updates. Comparisons of V3 aerosol retrievals to those of V2 are presented, along with a new approach to estimate uncertainties in many of the retrieved aerosol parameters. Changes in the V3 aerosol retrieval algorithm include (1) a new polarized radiative transfer code (RTC), which replaced the scalar RTC of V2, (2) detailed characterization of gas absorption by adding NO2 and H2O to specify total gas absorption in the atmospheric column, specification of vertical profiles of all the atmospheric species, (3) new bidirectional reflectance distribution function (BRDF) parameters for land sites adopted from the MODIS BRDF/Albedo product, (4) a new version of the extraterrestrial solar flux spectrum, and (5) a new temperature correction procedure of both direct Sun and sky radiance measurements. The potential effect of each change in V3 on single scattering albedo (SSA) retrievals was analyzed. The operational almucantar retrievals of V2 versus V3 were compared for four AERONET sites: GSFC, Mezaira, Mongu, and Kanpur. Analysis showed very good agreement in retrieved parameters of the size distributions. Comparisons of SSA retrievals for dust aerosols (Mezaira) showed a good agreement in 440 nm SSA, while for longer wavelengths V3 SSAs are systematically higher than those of V2, with the largest mean difference at 675 nm due to cumulative effects of both extraterrestrial solar flux and BRDF changes. For non-dust aerosols, the largest SSA deviation is at 675 nm due to differences in extraterrestrial solar flux spectrums used in each version. Further, the SSA 675 nm mean differences are very different for weakly (GSFC) and strongly (Mongu) absorbing aerosols, which is explained by the lower sensitivity to a bias in aerosol scattering optical depth by less absorbing aerosols. A new hybrid (HYB) sky radiance measurement scan is introduced and discussed. The HYB combines features of scans in two different planes to maximize the range of scattering angles and achieve scan symmetry, thereby allowing for cloud screening and spatial averaging, which is an advantage over the principal plane scan that lacks robust symmetry. We show that due to an extended range of scattering angles, HYB SSA retrievals for dust aerosols exhibit smaller variability with solar zenith angles (SZAs) than those of almucantar (ALM), which allows extension of HYB SSA retrievals to SZAs less than 50∘ to as small as 25∘. The comparison of SSA retrievals from closely time-matched HYB and ALM scans in the 50 to 75∘ SZA range showed good agreement with the differences below ∼0.005. We also present an approach to estimate retrieval uncertainties which utilizes the variability in retrieved parameters generated by perturbing both measurements and auxiliary input parameters as a proxy for retrieval uncertainty. The perturbations in measurements and auxiliary inputs are assumed as estimated biases in aerosol optical depth (AOD), radiometric calibration of sky radiances combined with solar spectral irradiance, and surface reflectance. For each set of Level 2 Sun/sky radiometer observations, 27 inputs corresponding to 27 combinations of biases were produced and separately inverted to generate the following statistics of the inversion results: average, standard deviation, minimum and maximum values. From these statistics, standard deviation (labeled U27) is used as a proxy for estimated uncertainty, and a lookup table (LUT) approach was implemented to reduce the computational time. The U27 climatological LUT was generated from the entire AERONET almucantar (1993–2018) and hybrid (2014–2018) scan databases by binning U27s in AOD (440 nm), Angström exponent (AE, 440–870 nm), and SSA (440, 675, 870, 1020 nm). Using this LUT approach, the uncertainty estimates U27 for each individual V3 Level 2 retrieval can be obtained by interpolation using the corresponding measured and inverted combination of AOD, AE, and SSA.
Validation, Comparison, and Integration of GOCI, AHI, MODIS, MISR, and VIIRS Aerosol Optical Depth Over East Asia During the 2016 KORUS-AQ Campaign
Recently launched multichannel geostationary Earth orbit (GEO) satellite sensors, such as the Geostationary Ocean Color Imager (GOCI) and the Advanced Himawari Imager (AHI), provide aerosol products over East Asia with high accuracy, which enables the monitoring of rapid diurnal variations and the transboundary transport of aerosols. Most aerosol studies to date have used low Earth orbit (LEO) satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), with a maximum of one or two overpass daylight times per day from midlatitudes to low latitudes. Thus, the demand for new GEO observations with high temporal resolution and improved accuracy has been significant. In this study the latest versions of aerosol optical depth (AOD) products from three LEO sensors – MODIS (Dark Target, Deep Blue, and MAIAC), MISR, and the Visible/Infrared Imager Radiometer Suite (VIIRS), along with two GEO sensors (GOCI and AHI), are validated, compared, and integrated for a period during the Korea–United States Air Quality Study (KORUS-AQ) field campaign from 1 May to 12 June 2016 over East Asia. The AOD products analyzed here generally have high accuracy with high R (0.84–0.93) and low RMSE (0.12–0.17), but their error characteristics differ according to the use of several different surface-reflectance estimation methods. High-accuracy near-real-time GOCI and AHI measurements facilitate the detection of rapid AOD changes, such as smoke aerosol transport from Russia to Japan on 18–21 May 2016, heavy pollution transport from China to the Korean Peninsula on 25 May 2016, and local emission transport from the Seoul Metropolitan Area to the Yellow Sea in South Korea on 5 June 2016. These high-temporal-resolution GEO measurements result in more representative daily AOD values and make a greater contribution to a combined daily AOD product assembled by median value selection with a 0.5∘×0.5∘ grid resolution. The combined AOD is spatially continuous and has a greater number of pixels with high accuracy (fraction within expected error range of 0.61) than individual products. This study characterizes aerosol measurements from LEO and GEO satellites currently in operation over East Asia, and the results presented here can be used to evaluate satellite measurement bias and air quality models.
Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements
The Aerosol Robotic Network (AERONET) has provided highly accurate, ground-truth measurements of the aerosol optical depth (AOD) using Cimel Electronique Sun–sky radiometers for more than 25 years. In Version 2 (V2) of the AERONET database, the near-real-time AOD was semiautomatically quality controlled utilizing mainly cloud-screening methodology, while additional AOD data contaminated by clouds or affected by instrument anomalies were removed manually before attaining quality-assured status (Level 2.0). The large growth in the number of AERONET sites over the past 25 years resulted in significant burden to the manual quality control of millions of measurements in a consistent manner. The AERONET Version 3 (V3) algorithm provides fully automatic cloud screening and instrument anomaly quality controls. All of these new algorithm updates apply to near-real-time data as well as post-field-deployment processed data, and AERONET reprocessed the database in 2018. A full algorithm redevelopment provided the opportunity to improve data inputs and corrections such as unique filter-specific temperature characterizations for all visible and near-infrared wavelengths, updated gaseous and water vapor absorption coefficients, and ancillary data sets. The Level 2.0 AOD quality-assured data set is now available within a month after post-field calibration, reducing the lag time from up to several months. Near-real-time estimated uncertainty is determined using data qualified as V3 Level 2.0 AOD and considering the difference between the AOD computed with the pre-field calibration and AOD computed with pre-field and post-field calibration. This assessment provides a near-real-time uncertainty estimate for which average differences of AOD suggest a +0.02 bias and one sigma uncertainty of 0.02, spectrally, but the bias and uncertainty can be significantly larger for specific instrument deployments. Long-term monthly averages analyzed for the entire V3 and V2 databases produced average differences (V3–V2) of +0.002 with a ±0.02 SD (standard deviation), yet monthly averages calculated using time-matched observations in both databases were analyzed to compute an average difference of −0.002 with a ±0.004 SD. The high statistical agreement in multiyear monthly averaged AOD validates the advanced automatic data quality control algorithms and suggests that migrating research to the V3 database will corroborate most V2 research conclusions and likely lead to more accurate results in some cases.
Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin
The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO 2 , and RO 2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
Wildfires and agricultural burning generate seemingly increasing smoke aerosol emissions, impacting societal and natural ecosystems. To understand smoke's effects on climate and public health, we analyzed the spatiotemporal distribution of smoke aerosols, focusing on two major light-absorbing components, namely black carbon (BC) and brown carbon (BrC) aerosols. Using NASA's Earth Polychromatic Imaging Camera (EPIC) instrument aboard NOAA's Deep Space Climate Observatory (DSCOVR) spacecraft, we inferred BC and BrC volume fractions and particle mass concentrations based on spectral absorption provided by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm with 1–2 h temporal resolution and ∼ 10 km spatial resolution over North America and central Africa. Our analyses of regional smoke properties reveal distinct characteristics for aerosol optical depth (AOD) at 443 nm, spectral single-scattering albedo (SSA), aerosol layer height (ALH), and BC and BrC amounts. Smoke aerosols in North America showed extremely high AOD up to 6, with elevated ALH (6–7 km) and significant BrC components up to 250 mg m−2 along the transport paths, whereas the smoke aerosols in central Africa exhibited stronger light absorption (i.e., lower SSA) and lower AOD, resulting in higher-BC mass concentrations and similar BrC mass concentrations than the cases in North America. Seasonal burning source locations in central Africa, following the seasonal shift in the Intertropical Convergence Zone and diurnal variations in smoke amounts, were also captured. A comparison of retrieved AOD443, SSA443, SSA680, and ALH with collocated AERONET and CALIOP measurements shows agreement with RMSE values of 0.2, 0.03–0.04, 0.02–0.04, and 0.8–1.3 km, respectively. An analysis of the spatiotemporal average reveals distinct geographical characteristics in smoke properties closely linked to burning types and meteorological conditions. Forest wildfires over western North America generated smoke with a small-BC volume fraction of 0.011 and a high ALH with large variability (2.2 ± 1.2 km), whereas smoke from wildfires and agricultural burning over Mexico region shows more absorption and low ALH. Smoke from savanna fires over central Africa had the most absorption, with a high-BC volume fraction (0.015) and low ALH with a small variation (1.8 ± 0.6 km) among the analyzed regions. Tropical forest smoke was less absorbing and had a high variance in ALH. We also quantify the estimation uncertainties related to the assumptions of BC and BrC refractive indices. The MAIAC EPIC smoke properties with BC and BrC volume and mass fractions and assessment of the layer height provide observational constraints for radiative forcing modeling and air quality and health studies.
Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network
A statistical approach is used to assess the quality of the Multiangle Imaging SpectroRadiometer (MISR) version 22 (V22) aerosol products. Aerosol optical depth (AOD) retrieval results are improved relative to the early postlaunch values reported by [Kahn et al. (2005)], which varied with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% × AOD of the paired validation data from the Aerosol Robotic Network (AERONET), and about 50% to 55% are within 0.03 or 10% × AERONET AOD, except at sites where dust or mixed dust and smoke are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three size groupings: “small,” “medium,” and “large.” For particle size, ground‐based AERONET sun photometer Angstrom exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident single‐scattering albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. nonabsorbing), as well as spherical vs. nonspherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions and is diminished for midvisible AODs below about 0.15 or 0.2. On the basis of these results, specific algorithm upgrades are proposed and are being investigated by the MISR team for possible implementation in future versions of the product.
Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China
Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71–0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (∼ 0.40–0.60) than in January and February (0.71–0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ∼ 0.04–0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was −93 ± 44 to −79 ± 39 W m−2 at the Earth's surface and ∼ −40 W m−2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80∘) under cloud-free conditions. The fine mode composed a major contribution of the absorbing particles in the classification scheme based on SSA, fine-mode fraction and extinction Angström exponent. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing algorithms.
A Study on the Effect of Emotional Solidarity on Memorable Tourism Experience and Destination Loyalty in Volunteer Tourism
Memorable tourism experience is regarded as an important concept in understanding tourists’ travel experiences; however, emotional solidarity toward local residents and its influence on volunteer tourists has not been studied in the field of volunteer tourism. To fill this research gap, this study proposes a theoretical model that integrates emotional solidarity (which consists of three dimensions: feeling welcomed, emotional closeness, and sympathetic understanding), with memorable tourism experience and destination loyalty. The results show that volunteer tourists’ perceptions of emotional closeness and sympathetic understanding with residents directly affect tourists’ loyalty to the destination. In particular, the relationships involving volunteer tourists’ feeling welcomed by residents, emotional closeness, and sympathetic understanding with residents, and destination loyalty were all mediated by memorable tourism experience. This study contributes to the revitalization of volunteer tourism by examining the impact of emotional factors developed with local residents on the tourism experience of volunteer tourists while visiting the area.
Are dark tourism experiences memorable? Examining mindfulness and memorable tourism experiences in dark tourism
Dark tourism continues to gain greater attention in the tourism literature. While such sites provide novel experiences, research about the tourists’ experience at dark tourism sites and memorability of visits is lacking. This study applied mindfulness theory and the memorable tourism experience (MTE) construct (with an adverse feeling dimension), to a dark tourism setting. Empirically, mindfulness, MTE dimensions (i.e., hedonism, involvement, meaningfulness, refreshment, knowledge, novelty, local culture, and adverse feeling), and word of mouth (WOM) were investigated. A structural model explored sixteen proposed hypotheses based on data from 264 Korean tourists who had visited a South Korean dark tourism site. Data were analyzed using confirmatory factor analysis and structural equation modeling. Results indicated that mindfulness influenced all MTE dimensions and specific dimensions (hedonism, involvement, meaningfulness, and knowledge) of MTEs influenced WOM intention. Study findings serve to provide insight into how memorable tourist experiences at dark tourism sites can be enhanced.