Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
182 result(s) for "Eckert, Scott A"
Sort by:
Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials
Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.
Home range, site fidelity, and movements of timber rattlesnakes (Crotalus horridus) in west-central Illinois
Understanding the home range of imperiled reptiles is important to the design of conservation and recovery efforts. Despite numerous home range studies for the Threatened timber rattlesnake ( Crotalus horridus ), many have limited sample sizes or outdated analytical methods and only a single study has been undertaken in the central midwestern United States. We report on the home range size, site fidelity, and movements of C. horridus in west-central Illinois. Using VHF telemetry, we located 29 C. horridus (13 female, 16 male) over a 5-year period for a total of 51 annual records of the species' locations and movements. We calculated annual home ranges for each snake per year using 99%, 95%, and 50% isopleths derived from Brownian Bridge utilization distributions (BBMM), and we also report 100% minimum convex polygons to be consistent with older studies. We examined the effects of sex, mass, SVL, and year on home range sizes and reported on movement metrics as well as home range fidelity using both Utilization Distribution Overlap Index (UDOI) and Bhattacharyya's affinity (BA) statistics. The home range sizes for male and non-gravid C. horridus were 88.72 Ha (CI 63.41–110.03) and 28.06 Ha (CI 17.17–38.96) for 99% BBMM; 55.65 Ha (CI 39.36–71.93) and 17.98 (CI 10.69–25.28) for 95% BBMM; 7.36 Ha (CI 5.08–9.64) and 2.06 Ha (CI 1.26–2.87) for 50% BBMM; and 78.54Ha (CI 47.78–109.30) and 27.96 Ha (CI 7.41–48.51) for MCP. The estimated daily distance traveled was significantly greater for males (mean = 57.25 m/day, CI 49.06–65.43) than females (mean = 27.55 m/day, CI 18.99–36.12), particularly during the summer mating season. Similarly, maximum displacement distances (i.e., maximum straight-line distance) from hibernacula were significantly greater for males (mean = 2.03 km, CI 1.57–2.48) than females (mean = 1.29 km, CI 0.85–1.73], and on average, males were located further from their hibernacula throughout the entirety of their active season. We calculated fidelity to high-use areas using 11 snakes that were tracked over multiple years. The mean BBMM overlap using Bhattacharyya's affinity (BA) for all snakes at the 99%, 95%, and 50% isopleths was 0.48 (CI 0.40–0.57), 0.40 (0.32–0.49), and 0.07 (0.05–0.10), respectively. The mean BBMM overlap for all snakes using the Utilization Distribution Overlap Index (UDOI) at the 99%, 95%, and 50% isopleths was 0.64 (CI 0.49–0.77), 0.32 (CI 0.21–0.47), and 0.02 (CI 0.01–0.05)), respectively. Our results are largely consistent with those of other studies in terms of the influence of sex on home range size and movements. The species also exhibits strong site fidelity with snakes generally using the same areas each summer, though there is far less overlap in specific (e.g., 50% UDOI) high-use areas, suggesting some plasticity in hunting areas. Particularly interesting was the tendency for snakes to disperse from specific hibernacula in the same general direction to the same general areas. We propose some possible reasons for this dispersal pattern.
Persistent Leatherback Turtle Migrations Present Opportunities for Conservation
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.
Phenology and predictors of spring emergence for the Timber Rattlesnake ( Crotalus horridus )
Many temperate reptiles survive winter by using subterranean refugia until external conditions become suitable for activity. Determining when to emerge from refugia relies on the ability to interpret when above-ground environmental conditions are survivable. If temperate reptiles rely on specific environmental cues such as temperature to initiate emergence, we should expect emergence phenologies to be predictable using local climatic data. However, specific predictors of emergence for many temperate reptiles, including the Timber Rattlesnake ( Crotalus horridus ), remain unclear, limiting our understanding of their overwintering phenology and restricting effective conservation and management. Our objectives were to identify environmental cues of spring emergence for C. horridus in Illinois to determine the species’ emergence phenology, and to examine the applicability of identified cues in predicting emergence phenology across the species’ range. We used wildlife cameras and weather station-derived environmental data to observe and predict the daily surface presence of C. horridus throughout the late winter and early spring at communal refugia in west-central and northern Illinois. The most parsimonious model for predicting surface presence included the additive effects of maximum daily temperature, accumulated degree days, and latitude. With a notable exception in the southeastern U.S., the model accurately predicted the average emergence day for eight other populations range wide, emphasizing the importance of temperature in influencing the phenological plasticity observed across the species’ range. The apparent broad applicability of the model to other populations suggests it can be a valuable tool in predicting spring emergence phenology. Our results provide a foundation for further ecological enquiries and improved management and conservation strategies.
Identification of distinct movement patterns in Pacific leatherback turtle populations influenced by ocean conditions
Interactions with fisheries are believed to be a major cause of mortality for adult leatherback turtles ( Dermochelys coriacea ), which is of particular concern in the Pacific Ocean, where they have been rapidly declining. In order to identify where these interactions are occurring and how they may be reduced, it is essential first to understand the movements and behavior of leatherback turtles. There are two regional nesting populations in the East Pacific (EP) and West Pacific (WP), comprising multiple nesting sites. We synthesized tracking data from the two populations and compared their movement patterns. A switching state-space model was applied to 135 Argos satellite tracks to account for observation error, and to distinguish between migratory and area-restricted search behaviors. The tracking data, from the largest leatherback data set ever assembled, indicated that there was a high degree of spatial segregation between EP and WP leatherbacks. Area-restricted search behavior mainly occurred in the southeast Pacific for the EP leatherbacks, whereas the WP leatherbacks had several different search areas in the California Current, central North Pacific, South China Sea, off eastern Indonesia, and off southeastern Australia. We also extracted remotely sensed oceanographic data and applied a generalized linear mixed model to determine if leatherbacks exhibited different behavior in relation to environmental variables. For the WP population, the probability of area-restricted search behavior was positively correlated with chlorophyll- a concentration. This response was less strong in the EP population, but these turtles had a higher probability of search behavior where there was greater Ekman upwelling, which may increase the transport of nutrients and consequently prey availability. These divergent responses to oceanographic conditions have implications for leatherback vulnerability to fisheries interactions and to the effects of climate change. The occurrence of leatherback turtles within both coastal and pelagic areas means they have a high risk of exposure to many different fisheries, which may be very distant from their nesting sites. The EP leatherbacks have more limited foraging grounds than the WP leatherbacks, which could make them more susceptible to any temperature or prey changes that occur in response to climate change.
Longest recorded trans-Pacific migration of a whale shark (Rhincodon typus)
Whale sharks ( Rinchodon typus ) are found in shallow coastal and deep waters of tropical and warm temperate seas. Population genetic studies indicate high connectivity among populations, and an Indo-Pacific meta-population has been suggested with potential migrations among some ocean basins. Here, we present the satellite track of a trans-Pacific migration of a female whale shark, which we tagged at Coiba Island (Panama), and which travelled over 20,000 km from the Tropical Eastern Pacific (Panama) to the western Indo-Pacific (Mariana Trench) in 841 d, primarily via the North Equatorial Current. This finding illustrates the migratory pathway between two ocean basins and potential passageway to reach the Philippine Sea into the South China Sea.
High-use oceanic areas for Atlantic leatherback sea turtles (Dermochelys coriacea) as identified using satellite telemetered location and dive information
The movements and behavior of nine female leatherback sea turtles, Dermochelys coriacea (L.) were monitored for up to 370 days from their nesting beaches on the Caribbean island of Trinidad between 1995 and 2004 using satellite-linked time and depth recorders. During the inter-nesting period (typically March-July) turtles ranged widely, but frequented the area around Galera Point on the NE corner of Trinidad. Diving depths were typically <51 m. Upon leaving Trinidad, the three longest tracked turtles moved to higher latitude foraging areas, NE of the Flemish Cap; along the continental shelf of the Iberian peninsula to the Bay of Biscay; and along the N. Atlantic subtropical front, where they remained until the end of November. Dives were initially deep (100-300 m) and long (>26 min) as the turtles left the Caribbean, but became very shallow (>50 m) and short at high latitudes. Between mid-October and mid-November, the turtles left high latitudes for a presumed foraging area in the Mauritania upwelling where they resided until their tracking records ended. Diving remained relatively shallow. It is proposed that movements of these turtles from one foraging area to another are driven by the opportunity to forage in areas of distinct oceanic structure which serve to concentrate their gelatinous prey (e.g., salps, Scyphomedusae, Siphonophora) either at or below the surface.
Antipredatory strategies of leatherback sea turtles during internesting intervals on St. Croix, US Virgin Islands
Predators affect prey through mortality, and prey respond by employing antipredatory strategies. Although leatherback sea turtles Dermochelys coriacea are the largest sea turtle, they are susceptible to shark predation. Females lay multiple clutches of eggs separated by a ~10 d internesting interval at sea, during which they move many kilometers away from the nesting beach. The goal of this study was to test the hypothesis that this wide-ranging behavior was associated with predator avoidance. To accomplish this goal, we used animal-borne video and data recorders along with satellite telemetry to monitor diving behavior and track the at-sea movements of females during the internesting intervals on St. Croix, US Virgin Islands. After they departed the nesting beach, females immediately swam a mean maximum distance of 101 km from St. Croix. The mean transit distance during 10.19 d at sea was 466 km. We recorded 102 periods during which females inverted and rotated vigorously for an average of 2.7 min at or near the surface. Because females nesting on St. Croix commonly exhibit scars and fresh wounds, many of which result from shark encounters, this behavior likely represents a defensive response to predator attack. The frequency of defensive behaviors that occurred <6 km from the nesting beach (4.6 d−1) was 3.3-fold greater than when they were >6 km from shore (1.4 d−1). By moving offshore, females reduced the possibility of predator encounters by 53%.
Telemetry and Satellite Tracking of Whale Sharks, Rhincodon Typus, in the Sea of Cortez, Mexico, and the North Pacific Ocean
We used satellite-linked radio telemetry to document the geographic and vertical movements and thermal habitats of whale sharks in the Sea of Cortez and as they migrated into the north Pacific Ocean. Of 17 sharks tagged between 1994 and 1996, six dispersed widely in the Sea of Cortez during 12-39 days of tracking. Four others left the Sea of Cortez and ranged extensively in the north Pacific Ocean. Indeed, one whale shark migrated to the western north Pacific Ocean, covering over 13 000 km in 37 months of tracking. The sharks generally occupied areas where sea surface water temperatures were between 28 and 32 degree C, though several ranged to depths of 240 m or deeper where water temperature reached 10 degree C or colder. Whale sharks may segregate by size and sex, and their movement patterns appear to be related to oceanographic features, such as sea mounts and boundary currents, where primary productivity may be enhanced. These results have important implications for the global conservation of the world's largest yet least known fish. Satellite telemetry is a promising tool for learning more about the ecology of whale sharks, especially when combined with conventional methods of telemetry and molecular biology.
Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean
Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.