Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Edlund, Christopher K"
Sort by:
The sex hormone system in carriers of BRCA1/2 mutations: a case-control study
Penetrance for breast cancer, ovarian cancer, or both in carriers of BRCA1/BRCA2 mutations is disproportionately high. Sex hormone dysregulation and altered end-organ hormone sensitivity might explain this organ-specific penetrance. We sought to identify differences in hormone regulation between carriers of BRCA1/2 and women who are negative for BRCA1/2 mutations. We assessed endometrial thickness for each menstrual cycle day (as an index of hormone regulation) in 393 scans from 228 women in the UK Familial Ovarian Cancer Screening Study (UK FOCSS) known to carry either mutation and 1573 scans from 754 women known to be negative for the mutations. To quantify differences in endometrial thickness we focused on days 10–14 and days 21–26, and calculated the area under the curve. We then compared serum oestradiol and progesterone titres during these days of the menstrual cycle in the same groups. Follicular and luteal oestradiol and progesterone serum titres were grouped into quartiles and odds ratios were calculated with logistic regression. Follicular phase endometrial thickness of carriers of the mutations adjusted for age and day of the menstrual cycle was higher (odds ratio [OR] 1·11, 95% CI 1·03–1·20; p=0·0063) and luteal phase endometrial thickness lower (0·90, 0·83–0·98; p=0·027) than for women negative for the mutations. Median luteal phase titres of progesterone were 121% higher (p=0·00037) in carriers than in women negative for the mutations, and for oestradiol were 33% higher (p=0·007)—ie, 59% of carriers had concentrations of serum progesterone that would have been in the top quartile of concentrations in the control group (OR 8·0, 95% CI 2·1–52·57; p=0·008). Carriers of BRCA1/BRCA2 mutations are exposed to higher titres of oestradiol and progesterone—known risk-factors for breast cancer. Higher titres of oestradiol in carriers are compatible with this hormone having a role in ovarian carcinogenesis in such women. Our findings could not be explained by differential contraceptive pill use. Eve Appeal, European Union, Cancer Research UK, and US National Institutes of Health.
Multiple Functional Risk Variants in a SMAD7 Enhancer Implicate a Colorectal Cancer Risk Haplotype
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have led to the identification of a number of common variants associated with modest risk. Several risk variants map within the vicinity of TGFβ/BMP signaling pathway genes, including rs4939827 within an intron of SMAD7 at 18q21.1. A previous study implicated a novel SNP (novel 1 or rs58920878) as a functional variant within an enhancer element in SMAD7 intron 4. In this study, we show that four SNPs including novel 1 (rs6507874, rs6507875, rs8085824, and rs58920878) in linkage disequilibrium (LD) with the index SNP rs4939827 demonstrate allele-specific enhancer effects in a large, multi-component enhancer of SMAD7. All four SNPs demonstrate allele-specific protein binding to nuclear extracts of CRC cell lines. Furthermore, some of the risk-associated alleles correlate with increased expression of SMAD7 in normal colon tissues. Finally, we show that the enhancer is responsive to BMP4 stimulation. Taken together, we propose that the associated CRC risk at 18q21.1 is due to four functional variants that regulate SMAD7 expression and potentially perturb a BMP negative feedback loop in TGFβ/BMP signaling pathways.
Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries
Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3'-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan-continental population biomarkers for nicotine metabolism. This multiple ancestry meta-GWAS of the laboratory study-based NMR provides novel evidence and replication for genome-wide association of CYP2A6 single nucleotide and insertion-deletion polymorphisms. We identify three regions of genome-wide significance: proximal, intronic, and distal to CYP2A6. We replicate the top-ranking single nucleotide polymorphism from a recent GWAS of the NMR in Finnish smokers, identify a functional mechanism for this intronic variant from in silico analyses of RNA-seq data that is consistent with CYP2A6 expression measured in postmortem lung and liver, and provide additional support for the intergenic region between CYP2A6 and CYP2A7.
Smokescreen: a targeted genotyping array for addiction research
Background Addictive disorders are a class of chronic, relapsing mental disorders that are responsible for increased risk of mental and medical disorders and represent the largest, potentially modifiable cause of death. Tobacco dependence is associated with increased risk of disease and premature death. While tobacco control efforts and therapeutic interventions have made good progress in reducing smoking prevalence, challenges remain in optimizing their effectiveness based on patient characteristics, including genetic variation. In order to maximize collaborative efforts to advance addiction research, we have developed a genotyping array called Smokescreen. This custom array builds upon previous work in the analyses of human genetic variation, the genetics of addiction, drug metabolism, and response to therapy, with an emphasis on smoking and nicotine addiction. Results The Smokescreen genotyping array includes 646,247 markers in 23 categories. The array design covers genome-wide common variation (65.67, 82.37, and 90.72 % in African (YRI), East Asian (ASN), and European (EUR) respectively); most of the variation with a minor allele frequency ≥ 0.01 in 1014 addiction genes (85.16, 89.51, and 90.49 % for YRI, ASN, and EUR respectively); and nearly all variation from the 1000 Genomes Project Phase 1, NHLBI GO Exome Sequencing Project and HapMap databases in the regions related to smoking behavior and nicotine metabolism: CHRNA5-CHRNA3-CHRNB4 and CYP2A6-CYP2B6. Of the 636 pilot DNA samples derived from blood or cell line biospecimens that were genotyped on the array, 622 (97.80 %) passed quality control. In passing samples, 90.08 % of markers passed quality control. The genotype reproducibility in 25 replicate pairs was 99.94 %. For 137 samples that overlapped with HapMap2 release 24, the genotype concordance was 99.76 %. In a genome-wide association analysis of the nicotine metabolite ratio in 315 individuals participating in nicotine metabolism laboratory studies, we identified genome-wide significant variants in the CYP2A6 region (min p  = 9.10E-15). Conclusions We developed a comprehensive genotyping array for addiction research and demonstrated its analytic validity and utility through pilot genotyping of HapMap and study samples. This array allows researchers to perform genome-wide, candidate gene, and pathway-based association analyses of addiction, tobacco-use, treatment response, comorbidities, and associated diseases in a standardized, high-throughput platform.
Ethnic-specific associations of rare and low-frequency DNA sequence variants with asthma
Common variants at many loci have been robustly associated with asthma but explain little of the overall genetic risk. Here we investigate the role of rare (<1%) and low-frequency (1–5%) variants using the Illumina HumanExome BeadChip array in 4,794 asthma cases, 4,707 non-asthmatic controls and 590 case–parent trios representing European Americans, African Americans/African Caribbeans and Latinos. Our study reveals one low-frequency missense mutation in the GRASP gene that is associated with asthma in the Latino sample ( P =4.31 × 10 −6 ; OR=1.25; MAF=1.21%) and two genes harbouring functional variants that are associated with asthma in a gene-based analysis: GSDMB at the 17q12–21 asthma locus in the Latino and combined samples ( P =7.81 × 10 −8 and 4.09 × 10 −8 , respectively) and MTHFR in the African ancestry sample ( P =1.72 × 10 −6 ). Our results suggest that associations with rare and low-frequency variants are ethnic specific and not likely to explain a significant proportion of the ‘missing heritability’ of asthma. Common variants account for only a small amount of the heritable risk for developing asthma. Using a meta-analysis approach, Igartua et al . identify one low-frequency missense mutation and two genes with functional variants that are associated with asthma, but only in specific ethnic groups.
GWASeq: targeted re-sequencing follow up to GWAS
Background For the last decade the conceptual framework of the Genome-Wide Association Study (GWAS) has dominated the investigation of human disease and other complex traits. While GWAS have been successful in identifying a large number of variants associated with various phenotypes, the overall amount of heritability explained by these variants remains small. This raises the question of how best to follow up on a GWAS, localize causal variants accounting for GWAS hits, and as a consequence explain more of the so-called “missing” heritability. Advances in high throughput sequencing technologies now allow for the efficient and cost-effective collection of vast amounts of fine-scale genomic data to complement GWAS. Results We investigate these issues using a colon cancer dataset. After QC, our data consisted of 1993 cases, 899 controls. Using marginal tests of associations, we identify 10 variants distributed among six targeted regions that are significantly associated with colorectal cancer, with eight of the variants being novel to this study. Additionally, we perform so-called ‘SNP-set’ tests of association and identify two sets of variants that implicate both common and rare variants in the etiology of colorectal cancer. Conclusions Here we present a large-scale targeted re-sequencing resource focusing on genomic regions implicated in colorectal cancer susceptibility previously identified in several GWAS, which aims to 1) provide fine-scale targeted sequencing data for fine-mapping and 2) provide data resources to address methodological questions regarding the design of sequencing-based follow-up studies to GWAS. Additionally, we show that this strategy successfully identifies novel variants associated with colorectal cancer susceptibility and can implicate both common and rare variants.
Organic Cation Transporter Variation and Response to Smoking Cessation Therapies
We evaluated chr6q25.3 organic cation transporter gene (SLC22A1, SLC22A2, SLC22A3) variation and response to smoking cessation therapies. The corresponding proteins are low-affinity transporters of choline, acetylcholine and monoamines, and smoking cessation pharmacotherapies expressed in multiple tissues. We selected 7 common polymorphisms for mega-regression analysis. We assessed additive model association of polymorphisms with 7-day point prevalence abstinence overall and by assigned pharmacotherapy at end of treatment and at 6 months among European-ancestry participants of 7 randomized controlled trials adjusted for demographic, population genetic, and trial covariates. Initial results were obtained in 6 trials with 1,839 participants. Nominally statistically significant associations of 2 SLC22A2 polymorphisms were observed: (1) with rs316019 at 6 months, overall ([c.808T>G; p.Ser270Ala], OR = 1.306, 95% CI = 1.034-1.649, p = .025), and among those randomized to nicotine replacement therapy (NRT) (OR = 1.784, 95% CI = 1.072-2.970, p = .026); and (2) with rs316006 (c.1502-529A>T) among those randomized to varenicline (OR = 1.420, 95% CI = 1.038-1.944, p = .028, OR = 1.362, 95% CI = 1.001-1.853, p = .04) at end of treatment and 6 months. Individuals randomized to NRT from a seventh trial were genotyped for rs316019; rs316019 was associated with a nominally statistically significant effect on abstinence overall at 6 months among 2,233 participants (OR = 1.249, 95% CI = 1.007-1.550, p = .043). The functional OCT2 Ser270Ala polymorphism is nominally statistically significantly associated with abstinence among European-ancestry treatment-seeking smokers after adjustments for pharmacotherapy, demographics, population genetics, and without adjustment for multiple testing of 7 SNPs. Replication of these preliminary findings in additional randomized controlled trials of smoking cessation therapies and from multiple continental populations would describe another pharmacogenetic role for SLC22A2/OCT2.
Variation in folate pathway genes and distal colorectal adenoma risk: a sigmoidoscopy-based case-control study
Background: Folate-associated one-carbon metabolism (FOCM) is an important pathway in colorectal neoplasia risk but data on genetic variation in this pathway are largely limited to studies of single SNPs in selected genes. Methods: We used a comprehensive tagSNP approach to study the association between genetic variation in 11 genes in the FOCM pathway and risk of incident distal colorectal adenomas in a sigmoidoscopy-based case-control study. We included 655 cases (one or more adenomas) and 695 controls (no adenomas) recruited from one of two Kaiser Permanente clinics between 1991 and 1995. We assessed a total of 159 tagSNPs selected using Haploview Tagger as well as selected non-synonymous SNPs. We used unconditional logistic regression to model the association between SNPs and risk of distal adenomas, assuming a logadditive model. Results: Five SNPs in the SLC19A1 (RFC1) gene: rsl051266 (G80A), rs283895, rs2236484, rs12482346, and rs2838958 were associated with adenoma risk after correction for multiple testing (all corrected p values ≤0.043). The non-synonymous SLC19A1 SNP G80A interacted significantly with the MTHFR C677T genotype (interaction p value = 0.018). Conclusion: Our data suggest that genetic variation in SLC19A1 may modify the risk of distal colorectal adenoma.
Genetic variation in insulin pathway genes and distal colorectal adenoma risk
Background Insulin, glucose, and other insulin-related proteins that mediate insulin signaling are associated with colorectal neoplasia risk, but associations with common genetic variation in insulin axis genes are less clear. In this study, we used a comprehensive tag single-nucleotide polymorphisms (SNPs) approach to define genetic variation in six insulin axis genes ( IGF1 , IGF2 , IGFBP1 , IGFBP3 , IRS1 , and IRS2 ) and three genes associated with estrogen signaling ( ESR1 , ESR2 , and PGR ). Methods We assessed associations between SNPs and distal colorectal adenoma (CRA) risk in a case–control study of 1,351 subjects. Cases were individuals with one or more adenomas diagnosed during sigmoidoscopy, and controls were individuals with no adenomas at the sigmoidoscopy exam. We used unconditional logistic regression assuming an additive model to assess SNP-specific risks adjusting for multiple comparisons with P act . Results Distal adenoma risk was significantly increased for one SNP in IGF2 [per minor allele OR = 1.41; 95 % confidence interval (CI) = 1.16, 1.67; P act  = 0.005] and decreased for an ESR2 SNP (per minor allele OR = 0.78; 95 % CI = 0.66, 0.91; P act  = 0.041). There was no statistically significant heterogeneity of these associations by race, sex, BMI, physical activity, or, in women, hormone replacement therapy use. Risk estimates did not differ in the colon versus rectum or for smaller (<1 cm) versus larger ( > 1 cm) adenomas. Conclusions These data suggest that selected genetic variability in IGF2 and ESR2 may be modifiers of CRA risk.
Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes
Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.