Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
39
result(s) for
"Edvardson, Simon"
Sort by:
Nociception and pain in humans lacking a functional TRPV1 channel
2023
BACKGROUNDChronic pain is a debilitating illness with currently limited therapy, in part due to difficulties in translating treatments derived from animal models to patients. The transient receptor potential vanilloid 1 (TRPV1) channel is associated with noxious heat detection and inflammatory pain, and reports of adverse effects in human trials have hindered extensive efforts in the clinical development of TRPV1 antagonists as novel pain relievers.METHODSWe examined 2 affected individuals (A1 and A2) carrying a homozygous missense mutation in TRPV1, rendering the channel nonfunctional. Biochemical and functional assays were used to analyze the mutant channel. To identify possible phenotypes of the affected individuals, we performed psychophysical and medical examinations.RESULTSWe demonstrated that diverse TRPV1 activators, acting at different sites of the channel protein, were unable to open the cloned mutant channel. This finding was not a consequence of impairment in the expression, cellular trafficking, or assembly of protein subunits. The affected individuals were insensitive to application of capsaicin to the mouth and skin and did not demonstrate aversive behavior toward capsaicin. Furthermore, quantitative sensory testing of A1 revealed an elevated heat-pain threshold but also, surprisingly, an elevated cold-pain threshold and extensive neurogenic inflammatory, flare, and pain responses following application of the TRPA1 channel activator mustard oil.CONCLUSIONOur study provides direct evidence in humans for pain-related functional changes linked to TRPV1, which is a prime target in the development of pain relievers.FUNDINGSupported by the Israel Science Foundation (368/19); Teva's National Network of Excellence in Neuroscience grant (no. 0394886) and Teva's National Network of Excellence in Neuroscience postdoctoral fellowship.
Journal Article
A Deleterious Mutation in DNAJC6 Encoding the Neuronal-Specific Clathrin-Uncoating Co-Chaperone Auxilin, Is Associated with Juvenile Parkinsonism
by
Lesage, Suzanne
,
Kaestner, Klaus H.
,
Ta-Shma, Asaf
in
Adenosine triphosphatase
,
Adenosinetriphosphatase
,
Adolescent
2012
Parkinson disease is caused by neuronal loss in the substantia nigra which manifests by abnormality of movement, muscle tone, and postural stability. Several genes have been implicated in the pathogenesis of Parkinson disease, but the underlying molecular basis is still unknown for ∼70% of the patients. Using homozygosity mapping and whole exome sequencing we identified a deleterious mutation in DNAJC6 in two patients with juvenile parkinsonism. The mutation was associated with abnormal transcripts and marked reduced DNAJC6 mRNA level. DNAJC6 encodes the HSP40 Auxilin, a protein which is selectively expressed in neurons and confers specificity to the ATPase activity of its partner Hcs70 in clathrin uncoating. In Auxilin null mice it was previously shown that the abnormally increased retention of assembled clathrin on vesicles and in empty cages leads to impaired synaptic vesicle recycling and perturbed clathrin mediated endocytosis. Endocytosis function, studied by transferring uptake, was normal in fibroblasts from our patients, likely because of the presence of another J-domain containing partner which co-chaperones Hsc70-mediated uncoating activity in non-neuronal cells. The present report underscores the importance of the endocytic/lysosomal pathway in the pathogenesis of Parkinson disease and other forms of parkinsonism.
Journal Article
A loss-of-function mutation in human Oxidation Resistance 1 disrupts the spatial–temporal regulation of histone arginine methylation in neurodevelopment
by
Wang, Wei
,
Kuśnierczyk, Anna
,
Yang, Mingyi
in
Amyotrophic lateral sclerosis
,
Animal Genetics and Genomics
,
Antioxidants
2023
Background
Oxidation Resistance 1
(
OXR1
) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency.
Results
We report a novel loss-of-function mutation in the TLDc domain of the human
OXR1
gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial–temporal regulation of histone arginine methylation in specific brain regions.
Conclusions
This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.
Journal Article
NDUFS4, a mitochondrial complex I subunit, is essential for T-cell metabolic fitness and immune function
2026
Mitochondrial metabolism is essential for T-cell function, but the roles of individual electron transport chain (ETC) components are unclear. Here, we aimed to explore the role of mitochondrial complex I (CI) subunit NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (NDUFS4) in T-cell metabolic fitness and immunity.
We used a T cell-specific Ndufs4 knockout mouse model to find that NDUFS4 deficiency disrupts CI function, leading to metabolic and redox imbalances. Additionally, T cells from a patient with Leigh syndrome induced by NDUFS4 loss-of-function were analyzed.
Ndufs4-deficient T cells exhibit impaired OXPHOS, reduced respiratory capacity, and increased glycolysis, accompanied by reactive oxygen species (ROS) accumulation and defective TCR-driven activation, including reduced proliferation and cytokine production. In vivo, Ndufs4(-/-) mice show T-cell lymphopenia and impaired humoral and cytotoxic immunity. Importantly, T cells from a single Leigh syndrome patient with an NDUFS4 loss-of-function variant showed similar defects, including impaired activation and proliferation.
These findings highlight the importance of NDUFS4 for human immunity and establish a mechanistic link between complex I dysfunction and T-cell immunodeficiency. Our results identify NDUFS4 as a key regulator connecting mitochondrial integrity to adaptive immune function.
Journal Article
Deficiency of the alkaline ceramidase ACER3 manifests in early childhood by progressive leukodystrophy
by
Kleinman, Elisheva
,
Mao, Cungui
,
Jalas, Chaim
in
Alkaline Ceramidase - genetics
,
Azoles - metabolism
,
Bladder
2016
Background/aimsLeukodystrophies due to abnormal production of myelin cause extensive morbidity in early life; their genetic background is still largely unknown. We aimed at reaching a molecular diagnosis in Ashkenazi-Jewish patients who suffered from developmental regression at 6–13 months, leukodystrophy and peripheral neuropathy.MethodsExome analysis, determination of alkaline ceramidase activity catalysing the conversion of C18:1-ceramide to sphingosine and D-ribo-C12-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD)-phytoceramide to NBD-C12-fatty acid using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and thin layer chromatography, respectively, and sphingolipid analysis in patients’ blood by LC-MS/MS.ResultsThe patients were homozygous for p.E33G in the ACER3, which encodes a C18:1-alkaline ceramidase and C20:1-alkaline ceramidase. The mutation abolished ACER3 catalytic activity in the patients’ cells and failed to restore alkaline ceramidase activity in yeast mutant strain. The levels of ACER3 substrates, C18:1-ceramides and dihydroceramides and C20:1-ceramides and dihydroceramides and other long-chain ceramides and dihydroceramides were markedly increased in the patients’ plasma, along with that of complex sphingolipids, including monohexosylceramides and lactosylceramides.ConclusionsHomozygosity for the p.E33G mutation in the ACER3 gene results in inactivation of ACER3, leading to the accumulation of various sphingolipids in blood and probably in brain, likely accounting for this new form of childhood leukodystrophy.
Journal Article
Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus
by
Désir, Julie
,
Pirson, Isabelle
,
Jalas, Chaim
in
Adolescent
,
Adult
,
Biological and medical sciences
2012
Background Human congenital non-syndromic hydrocephalus is a vastly heterogeneous condition. A subgroup of cases are not secondary to a specific cause (eg, a neural tube defect), and within this subgroup, autosomal recessive inheritance has been described. One homozygous mutation in the DAPLE (Dvl-associating protein with a high frequency of leucine residues) protein-encoding gene CCDC88C (coiled-coil domain containing 88C) has recently been reported in a single family. The role of this gene has not been validated in another family, and no other autosomal recessive gene has been reported. Methods We used homozygosity mapping and whole exome sequencing in two families with primary, non-syndromic congenital hydrocephalus from two different ethnic backgrounds. Results In each family, we identified a novel homozygous mutation of CCDC88C. One mutation produced a premature stop codon at position 312 of the protein, while the second mutation induced a frameshift in the last exon, producing a stop codon that truncated the extreme C-terminus of DAPLE, including the 2026-2028 Gly-Cys-Val motif known to bind the post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1) (PDZ) domain of Dishevelled. Conclusions Our data validate CCDC88C as causing autosomal recessive, primary non-syndromic congenital hydrocephalus, suggesting this gene may be an important cause of congenital hydrocephalus, and underscore the important role of the C-terminal PDZ domain-binding motif in the DAPLE protein.
Journal Article
Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis
by
Gerardy-Schahn, Rita
,
Sturiale, Luisa
,
Jalas, Chaim
in
Animals
,
Arthrogryposis - genetics
,
Arthrogryposis - metabolism
2013
Background The heritability of autism spectrum disorder is currently estimated at 55%. Identification of the molecular basis of patients with syndromic autism extends our understanding of the pathogenesis of autism in general. The objective of this study was to find the gene mutated in eight patients from a large kindred, who suffered from autism spectrum disorder, arthrogryposis and epilepsy. Methods and results By linkage analysis and exome sequencing, we identified deleterious mutations in SLC35A3 in these patients. SLC35A3 encodes the major Golgi uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter. In Golgi vesicles isolated from patient fibroblasts the transport of the respective nucleotide sugar was significantly reduced causing a massive decrease in the content of cell surface expressed highly branched N-glycans and a concomitant sharp increase of lower branched glycoforms. Conclusions Spontaneous mutation in SLC35A3 has been discovered in cattle worldwide, recapitulating the human phenotype with arthrogryposis and additional skeletal defects known as Complex Vertebral Malformation syndrome. The skeletal anomalies in the mutant cattle and in our patients, and perhaps even the neurological symptoms are likely the consequence of the lack of high-branched N-glycans and the concomitant abundance of lower-branched glycoforms at the cell surface. This pattern has previously been associated with growth arrest and induction of differentiation. With this study, we add SLC35A3 to the gene list of autism spectrum disorders, and underscore the crucial importance of UDP-GlcNAc in the regulation of the N-glycan branching pathway in the Golgi apparatus.
Journal Article
Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency
2012
Background
Deficiency of complex II (succinate dehydrogenase, SDH) represents a rare cause of mitochondrial disease and is associated with a wide range of clinical symptoms. Recently, mutations of
SDHAF1,
the gene encoding for the SDH assembly factor 1, were reported in SDH-defective infantile leukoencephalopathy. Our goal was to identify
SDHAF1
mutations in further patients and to delineate the clinical phenotype.
Methods
In a retrospective data collection study we identified nine children with biochemically proven complex II deficiency among our cohorts of patients with mitochondrial disorders. The cohort comprised five patients from three families affected by SDH-defective infantile leukoencephalopathy with accumulation of succinate in disordered cerebral white matter, as detected by
in vivo
proton MR spectroscopy. One of these patients had neuropathological features of Leigh syndrome. Four further unrelated patients of the cohort showed diverse clinical phenotypes without leukoencephalopathy.
SDHAF1
was sequenced in all nine patients.
Results
Homozygous mutations of
SDHAF1
were detected in all five patients affected by leukoencephalopathy with accumulated succinate, but not in any of the four patients with other, diverse clinical phenotypes. Two sisters had a mutation reported previously, in three patients two novel mutations were found.
Conclusion
Leukoencephalopathy with accumulated succinate is a key symptom of defective complex II assembly due to
SDHAF1
mutations.
Journal Article
Conotruncal malformations and absent thymus due to a deleterious NKX2-6 mutation
by
Yaakobi-Simhayoff, Nurit
,
Nir, Amiram
,
Rein, Azaria J J T
in
Adolescent
,
Animals
,
Asymptomatic
2014
Background Truncus arteriosus (TA) accounts for ∼1% of congenital heart defects. The aetiology of isolated TA is largely unknown but when occurring as part of a syndrome, it is mostly associated with chromosome 22q11 deletion. Vice versa, the most common congenital heart defects associated with chromosome 22q11 deletion are conotruncal malformations. In this study we investigated the cause of multiple conotruncal malformations accompanied by athymia in a consanguineous family. Methods and results Whole exome analysis revealed a homozygous deleterious mutation in the NKX2-6 gene. Conclusions NKX2-6 encodes a homeobox-containing protein which is expressed in mouse embryo at E8.0-E9.5 at the caudal pharyngeal arches and the outflow tract. A single missense mutation was previously implicated in the aetiology of familial isolated TA; however, null mice are entirely normal. The clear phenotype associated with a homozygous deleterious mutation in the present report, falls well within the spectrum of the cardiac defects seen in DiGeorge syndrome, is in agreement with NKX2-6 downstream location in the TBX1 signalling pathway and confirms NKX2-6 role in human cardiogenesis.
Journal Article
WiTNNess : An international natural history study of infantile‐onset TNNT1 myopathy
by
Bolettieri, Emilienne
,
D'Amico, Adele
,
Brigatti, Karlla W.
in
Adolescent
,
Anthropomorphism
,
Blood
2023
We created WiTNNess as a hybrid prospective/cross-sectional observational study to simulate a clinical trial for infantile-onset TNNT1 myopathy. Our aims were to identify populations for future trial enrollment, rehearse outcome assessments, specify endpoints, and refine trial logistics.
Eligible participants had biallelic pathogenic variants of TNNT1 and infantile-onset proximal weakness without confounding conditions. The primary endpoint was ventilator-free survival. \"Thriving\" was a secondary endpoint defined as the ability to swallow and grow normally without non-oral feeding support. Endpoints of gross motor function included independent sitting and standing as defined by the Word Health Organization, a novel TNNT1 abbreviated motor score, and video mapping of limb movement. We recorded adverse events, concomitant medications, and indices of organ function to serve as comparators of safety in future trials.
Sixteen children were enrolled in the aggregate cohort (6 prospective, 10 cross-sectional; median census age 2.3 years, range 0.5-13.8). Median ventilator-free survival was 20.2 months and probability of death or permanent mechanical ventilation was 100% by age 60 months. All six children (100%) in the prospective arm failed to thrive by age 12 months. Only 2 of 16 (13%) children in the aggregate cohort sat independently and none stood alone. Novel exploratory motor assessments also proved informative. Laboratory and imaging data suggest that primary manifestations of TNNT1 deficiency are restricted to skeletal muscle.
WiTNNess allowed us to streamline and economize the collection of historical control data without compromising scientific rigor, and thereby establish a sound operational framework for future clinical trials.
Journal Article