Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Ehrens, Alexandra"
Sort by:
Eosinophils in filarial infections: Inducers of protection or pathology?
2022
Filariae are parasitic roundworms, which can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Lymphatic filariasis, also known as elephantiasis, and onchocerciasis, commonly referred to as river blindness, can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Filariae typically induce a type 2 immune response, which is characterized by cytokines, i.e., IL-4, IL-5 and IL-13 as well as type 2 immune cells including alternatively activated macrophages, innate lymphoid cells and Th2 cells. However, the hallmark characteristic of filarial infections is a profound eosinophilia. Eosinophils are innate immune cells and pivotal in controlling helminth infections in general and filarial infections in particular. By modulating the function of other leukocytes, eosinophils support and drive type 2 immune responses. Moreover, as primary effector cells, eosinophils can directly attack filariae through the release of granules containing toxic cationic proteins with or without extracellular DNA traps. At the same time, eosinophils can be a driving force for filarial pathology as observed during tropical pulmonary eosinophilia in lymphatic filariasis, in dermatitis in onchocerciasis patients as well as adverse events after treatment of onchocerciasis patients with diethylcarbamazine. This review summarizes the latest findings of the importance of eosinophil effector functions including the role of eosinophil-derived proteins in controlling filarial infections and their impact on filarial pathology analyzing both human and experimental animal studies.
Journal Article
Eosinophils and Neutrophils Eliminate Migrating Strongyloides ratti Larvae at the Site of Infection in the Context of Extracellular DNA Trap Formation
by
Linnemann, Lara
,
Rüdiger, Nikolas
,
Ehrens, Alexandra
in
Adaptive immunity
,
Animal welfare
,
Animals
2021
Parasitic nematodes such as hookworms actively penetrate the skin of their hosts, encountering skin-resident innate immune cells that represent the host´s first line of defense. Here we use Strongyloides ratti as a model for an intestinal helminth parasite with tissue migrating stages. We show that interception and killing of migrating larvae in mice during a 1 st infection occurred predominantly in skin and muscle tissue before larvae migrated via lung and head tissue to the intestine. Inhibition of larval migration was even more efficient in immune mice during a 2 nd infection where larvae barely left the site of entry i.e. the foot. Using cell-deficient mice we show that interception in the tissue was predominantly mediated by neutrophils and eosinophils while basophils and mast cells were dispensable in vivo . Likewise, neutrophils and eosinophils inhibited S. ratti L3 motility in vitro in the context of ETosis. Thereby eosinophils were strictly dependent on the presence of anti- S. ratti antibodies while neutrophils inhibited L3 motility as such. Also, MPO and MMP-9 were released by neutrophils in response to L3 alone, but immune plasma further stimulated MPO release in an antibody-dependent manner. In summary, our findings highlight the central role of the skin as first line of defense against helminth parasites in both, innate and adaptive immunity.
Journal Article
Major basic protein and eosinophil peroxidase support microfilariae motility inhibition by eosinophil ETosis
by
Risch, Frederic
,
Ehrens, Alexandra
,
Hoerauf, Achim
in
Animals
,
Biology and Life Sciences
,
Causes of
2025
Eosinophils are a hallmark of filarial infections. They are primary effector cells and can attack filariae by releasing extracellular traps that contain toxic cationic proteins, such as eosinophil peroxidase and major basic protein. Previous studies demonstrated that the extracellular traps of eosinophils are induced by the microfilariae of Litomosoides sigmodontis and that they inhibit their motility. In this project, we aimed to investigate the role of these cationic proteins during the extracellular trap-mediated immobilization of microfilariae. Our results indicate that extracellular DNA traps from knockout mice that lack eosinophil peroxidase or major basic protein are significantly less able to immobilize and kill microfilariae. Accordingly, the addition of these cationic proteins to in vitro cultures inhibited microfilariae motility in a dose-dependent manner. Moreover, we examined eosinophils from the natural host, the cotton rat Sigmodon hispidus . While eosinophils of cotton rats release DNA after stimulation with PMA and zymosan, microfilariae did not trigger this effector function. Our work shows that eosinophil granule proteins impair the motility of microfilariae and indicate significant differences in the effector functions of eosinophils between the mouse model and the natural host. We hypothesize that the absence of DNA nets released by cotton rat eosinophils in response to microfilariae may explain the higher microfilarial load and longer patency of the natural host.
Journal Article
Repeated sensitization of mice with microfilariae of Litomosoides sigmodontis induces pulmonary eosinophilia in an IL-33-dependent manner
by
Risch, Frederic
,
Reichwald, Julia J.
,
Strutz, Wiebke
in
Allergic reaction
,
Allergies
,
Allergy
2024
Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung.
Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2.
ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development.
Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.
Journal Article
Oxfendazole mediates macrofilaricidal efficacy against the filarial nematode Litomosoides sigmodontis in vivo and inhibits Onchocerca spec. motility in vitro
by
Dubben, Bettina
,
Ehrens, Alexandra
,
Townson, Simon
in
Animal models
,
Anthelmintic agents
,
Anthelmintics
2020
A major impediment to eliminate lymphatic filariasis and onchocerciasis is the lack of effective short-course macrofilaricidal drugs or regimens that are proven to be safe for both infections. In this study we tested oxfendazole, an anthelmintic shown to be well tolerated in phase 1 clinical trials. In vitro, oxfendazole exhibited modest to marginal motility inhibition of adult worms of Onchocerca gutturosa, pre-adult worms of Onchocerca volvulus and Onchocerca lienalis microfilariae. In vivo, five days of oral treatments provided sterile cure with up to 100% macrofilaricidal efficacy in the murine Litomosoides sigmodontis model of filariasis. In addition, 10 days of oral treatments with oxfendazole inhibited filarial embryogenesis in patent L. sigmodontis-infected jirds and subsequently led to a protracted but complete clearance of microfilaremia. The macrofilaricidal effect observed in vivo was selective, as treatment with oxfendazole of microfilariae-injected naïve mice was ineffective. Based on pharmacokinetic analysis, the driver of efficacy is the maintenance of a minimal efficacious concentration of approximately 100 ng/ml (based on subcutaneous treatment at 25 mg/kg in mice). From animal models, the human efficacious dose is predicted to range from 1.5 to 4.1 mg/kg. Such a dose has already been proven to be safe in phase 1 clinical trials. Oxfendazole therefore has potential to be efficacious for treatment of human filariasis without causing adverse reactions due to drug-induced microfilariae killing.
Journal Article
Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections
2020
Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal–adult-worm killing–treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4–5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti- Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti- Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti- Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.
Journal Article
The design and development of a study protocol to investigate Onchocerca volvulus, Loa loa and Mansonella perstans-mediated modulation of the metabolic and immunological profile in lean and obese individuals in Cameroon
by
Andrew, Beng Amuam
,
Ehrens, Alexandra
,
Nchang, Lucy Cho
in
Analysis
,
Antiparasitic agents
,
Biology and Life Sciences
2023
Life-style metabolic diseases are steadily rising, not only in developed countries, but also in low- and middle-income countries, presenting a global health problem. Metabolic disorders like type 2 diabetes and cardiovascular diseases are among the ten leading causes of death defined by the WHO in 2019. Results from animal and observational human studies suggest a connection between the decline in human helminth infections and rise of life-style-associated metabolic diseases in developing regions. This trial was designed to investigate filarial infections and their impact on metabolic diseases in Cameroon. We hypothesize that the induction of regulatory immune responses during filarial infection reduces obesity-induced low-grade inflammatory immune responses and thereby improves metabolic parameters, whereas anthelmintic treatment abolishes this protective effect.
Participants infected with Mansonella perstans, Onchocerca volvulus and/or Loa loa being lean (BMI <25), overweight (BMI >25 and <30) or clinically obese (BMI ≥30) from Littoral regions of Cameroon will be evaluated for their parasitological, immunological, metabolic and biochemical profile before and after treatment of their parasitic infections. Anthropomorphic measurements and a detailed questionnaire will complement our analysis. The investigation will assess blood immune cell populations, serum adipokines and cytokines that could be influenced by the parasite infection and/or metabolic diseases. Further, parameters like blood glucose, homeostatic model assessment of insulin resistance (HOMA-IR), circulating lipids and circulating makers of liver function will be monitored. Parameters will be assessed before treatment, 12 and 18 months after treatment.
The focus of this study is to obtain a comprehensive metabolic profile of the participants in rural areas of Cameroon and to investigate the relationship between filarial immunomodulation and metabolic diseases. This study will elucidate the effect of anti-filarial treatment on the metabolic and immunological parameters that partake in the development of insulin resistance, narrowing in on a potential protective effect of filarial infections on metabolic diseases.
doi.org/10.1186/ISRCTN43845142, ISRCTN43845142 February 2020 Trial title Effects of filarial parasite infection on type 2 diabetes Issue date: 27.10.22, V.1.
Journal Article
Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils
2019
Background
Mice are susceptible to infections with the rodent filarial nematode
Litomosoides sigmodontis
and develop immune responses that resemble those of human filarial infections. Thus, the
L. sigmodontis
model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against
L. sigmodontis
, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of
L. sigmodontis
infection.
Methods
Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5
−/−
mice, IL-4R
−/−
mice and IL-4R
−/−
/IL-5
−/−
mice were infected with
L. sigmodontis
. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R
−/−
/IL-5
−/−
mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen.
Results
Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R
−/−
/IL-5
−/−
mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival.
Conclusions
These data indicate that mice deficient for IL-4R
−/−
/IL-5
−/−
have the highest susceptibility for
L. sigmodontis
infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival.
Journal Article
ILC2s Control Microfilaremia During Litomosoides sigmodontis Infection in Rag2-/- Mice
by
Reichwald, Julia J.
,
Risch, Frederic
,
Scheunemann, Johanna F.
in
Aldehydes
,
Animals
,
CD4 antigen
2022
Group 2 innate lymphoid cells (ILC2s) are inducers of type 2 immune responses, but their role during filarial infection remains unclear. In the present study, we used the Litomosoides sigmodontis rodent model of filariasis to analyze ILC2s during infection in susceptible BALB/c mice that develop a chronic infection with microfilaremia and semi-susceptible C57BL/6 mice that eliminate the filariae shortly after the molt into adult worms and thus do not develop microfilaremia. ILC2s (CD45 + Lineage - TCRβ - CD90.2 + Sca-1 + IL-33R + GATA-3 + ) were analyzed in the pleural cavity, the site of L. sigmodontis infection, after the infective L3 larvae reached the pleural cavity (9 days post infection, dpi), after the molt into adult worms (30dpi) and during the peak of microfilaremia (70dpi). C57BL/6 mice had significantly increased ILC2 numbers compared to BALB/c mice at 30dpi, accompanied by substantially higher IL-5 and IL-13 levels, indicating a stronger type 2 immune response in C57BL/6 mice upon L. sigmodontis infection. At this time point the ILC2 numbers positively correlated with the worm burden in both mouse strains. ILC2s and GATA-3 + CD4 + T cells were the dominant source of IL-5 in L. sigmodontis -infected C57BL/6 mice with ILC2s showing a significantly higher IL-5 expression than CD4 + T cells. To investigate the importance of ILC2s during L. sigmodontis infection, ILC2s were depleted with anti-CD90.2 antibodies in T and B cell-deficient Rag2 -/- C57BL/6 mice on 26-28dpi and the outcome of infection was compared to isotype controls. Rag2 -/- mice were per se susceptible to L. sigmodontis infection with significantly higher worm burden than C57BL/6 mice and developed microfilaremia. Depletion of ILC2s did not result in an increased worm burden in Rag2 -/- mice, but led to significantly higher microfilariae numbers compared to isotype controls. In conclusion, our data demonstrate that ILC2s are essentially involved in the control of microfilaremia in Rag2 -/- C57BL/6 mice.
Journal Article
Corrigendum: Eosinophils and Neutrophils Eliminate Migrating Strongyloides ratti Larvae at the Site of Infection in the Context of Extracellular DNA Trap Formation
by
Linnemann, Lara
,
Rüdiger, Nikolas
,
Ehrens, Alexandra
in
eosinophils
,
ETosis
,
extracellular DNA traps
2022
[This corrects the article DOI: 10.3389/fimmu.2021.715766.].[This corrects the article DOI: 10.3389/fimmu.2021.715766.].
Journal Article