Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Eiring, Anna M."
Sort by:
PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells
by
Sun, Chaode
,
Santhanam, Ramasamy
,
Bhatia, Ravi
in
Animals
,
Antineoplastic Agents - pharmacology
,
Apoptosis
2013
The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase-independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression--but not activity--of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase-independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1-positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.
Journal Article
Proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), play an oncogenic role in chronic myeloid leukemia by stabilizing nuclear factor-kappa B
2021
Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 have revolutionized therapy for chronic myeloid leukemia (CML), paving the way for clinical development in other diseases. Despite success, targeting leukemic stem cells and overcoming drug resistance remain challenges for curative cancer therapy. To identify drivers of kinase-independent TKI resistance in CML, we performed genome-wide expression analyses on TKI-resistant versus sensitive CML cell lines, revealing a nuclear factor-kappa B (NF-κB) expression signature. Nucleocytoplasmic fractionation and luciferase reporter assays confirmed increased NF-κB activity in the nucleus of TKI-resistant versus sensitive CML cell lines and CD34
+
patient samples. Two genes that were upregulated in TKI-resistant CML cells were proteasome 26S subunit, non-ATPases 1 (
PSMD1
) and 3 (
PSMD3
), both members of the 19S regulatory complex in the 26S proteasome.
PSMD1
and
PSMD3
were also identified as survival-critical genes in a published small hairpin RNA library screen of TKI resistance. We observed markedly higher levels of
PSMD1
and
PSMD3
mRNA in CML patients who had progressed to the blast phase compared with the chronic phase of the disease. Knockdown of PSMD1 or PSMD3 protein correlated with reduced survival and increased apoptosis in CML cells, but not in normal cord blood CD34
+
progenitors. Luciferase reporter assays and immunoblot analyses demonstrated that PSMD1 and PSMD3 promote NF-κB protein expression in CML, and that signal transducer and activator of transcription 3 (STAT3) further activates NF-κB in scenarios of TKI resistance. Our data identify NF-κB as a transcriptional driver in TKI resistance, and implicate PSMD1 and PSMD3 as plausible therapeutic targets worthy of future investigation in CML and possibly other malignancies.
Journal Article
Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics
by
Le, Ilene
,
Gadad, Shrikanth S.
,
Chacon, Jessica
in
Adaptive immunity
,
Adaptive systems
,
Antigen (tumor-associated)
2022
Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics.
Journal Article
FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome–positive acute lymphocytic leukemia
2007
Blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome-positive (Ph1-positive) acute lymphocytic leukemia (ALL) are 2 fatal BCR/ABL-driven leukemias against which Abl kinase inhibitors fail to induce a long-term response. We recently reported that functional loss of protein phosphatase 2A (PP2A) activity is important for CML blastic transformation. We assessed the therapeutic potential of the PP2A activator FTY720 (2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol hydrochloride), an immunomodulator in Phase III trials for patients with multiple sclerosis or undergoing organ transplantation, in CML-BC and Ph1 ALL patient cells and in in vitro and in vivo models of these BCR/ABL+ leukemias. Our data indicate that FTY720 induces apoptosis and impairs clonogenicity of imatinib/dasatinib-sensitive and -resistant p210/p190(BCR/ABL) myeloid and lymphoid cell lines and CML-BC(CD34+) and Ph1 ALL(CD34+/CD19+) progenitors but not of normal CD34+ and CD34+/CD19+ bone marrow cells. Furthermore, pharmacologic doses of FTY720 remarkably suppress in vivo p210/p190(BCR/ABL)-driven [including p210/p190(BCR/ABL)(T315I)] leukemogenesis without exerting any toxicity. Altogether, these results highlight the therapeutic relevance of rescuing PP2A tumor suppressor activity in Ph1 leukemias and strongly support the introduction of the PP2A activator FTY720 in the treatment of CML-BC and Ph1 ALL patients.
Journal Article
A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia
by
Bolandi, Seyed Mohammadreza
,
Goudarzi, Negar
,
Pakjoo, Mahdi
in
Acute myeloid leukemia
,
Anemia
,
Animal models
2021
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Journal Article
26S Proteasome Non-ATPase Regulatory Subunits 1 (PSMD1) and 3 (PSMD3) as Putative Targets for Cancer Prognosis and Therapy
by
Gonzalez, Mayra A.
,
Young, James E.
,
Rubio, Andres J.
in
Adenosine triphosphatase
,
Antitumor agents
,
Apoptosis
2021
Ever since the ubiquitin proteasome system was characterized, efforts have been made to manipulate its function to abrogate the progression of cancer. As a result, the anti-cancer drugs bortezomib, carfilzomib, and ixazomib targeting the 26S proteasome were developed to treat multiple myeloma, mantle cell lymphoma, and diffuse large B-cell lymphoma, among others. Despite success, adverse side effects and drug resistance are prominent, raising the need for alternative therapeutic options. We recently demonstrated that knockdown of the 19S regulatory components, 26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3), resulted in increased apoptosis of chronic myeloid leukemia (CML) cells, but had no effect on normal controls, suggesting they may be good targets for therapy. Therefore, we hypothesized that PSMD1 and PSMD3 are potential targets for anti-cancer therapeutics and that their relevance stretches beyond CML to other types of cancers. In the present study, we analyzed PSMD1 and PSMD3 mRNA and protein expression in cancerous tissue versus normal controls using data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), comparing expression with overall survival. Altogether, our data suggest that PSMD1 and PSMD3 may be novel putative targets for cancer prognosis and therapy that are worthy of future investigation.
Journal Article
Pushing the limits of targeted therapy in chronic myeloid leukaemia
by
Zabriskie, Matthew S.
,
Deininger, Michael W.
,
O'Hare, Thomas
in
692/699/67/1059/602
,
692/699/67/1990/283/1896
,
Animals
2012
Key Points
Small-molecule BCR-ABL1 tyrosine kinase inhibitors (TKIs) have fundamentally improved the treatment of chronic myeloid leukaemia (CML) and have become a paradigm for molecularly targeted therapy, but they fail to kill leukaemic stem cells (LSCs).
BCR-ABL1-dependent resistance to currently approved TKIs typically involves single point mutations within the BCR-ABL1 tyrosine kinase domain that interfere with drug binding.
Third-generation TKIs that comprehensively cover single BCR-ABL1 mutants, including the T315I mutant (BCR-ABL1
T315I
), are in development. With respect to resistance, these TKIs are vulnerable to certain compound mutations (two or more mutations in the same BCR-ABL1 molecule) in
in vitro
model systems. The extent to which BCR-ABL1 compound mutation-based resistance tempers the effectiveness of third-generation TKIs in the clinical setting remains to be established.
BCR-ABL1-independent TKI resistance occurs despite effective inhibition of BCR-ABL1 kinase activity.
CML stem cells may rely on pathways similar to those responsible for BCR-ABL1-independent TKI resistance.
Other crucial targets in addition to BCR-ABL1 will probably need to be inhibited in both cases. Candidate pathways include Hedgehog, WNT–β-catenin, PP2A and transforming growth factor-β (TGFβ)–Forkhead box protein O3 (FOXO3A)–BCL-6.
Although chronic myeloid leukaemia (CML) can be treated with tyrosine kinase inhibitors (TKIs) against BCR-ABL1, cure is not achieved in most cases. This Review provides an update on resistance to TKIs, and discusses strategies to target BCR-ABL1-independent resistance, which may be necessary to eliminate CML stem cells and advanced disease.
Tyrosine kinase inhibitor (TKI) therapy targeting the BCR-ABL1 kinase is effective against chronic myeloid leukaemia (CML), but is not curative for most patients. Minimal residual disease (MRD) is thought to reside in TKI-insensitive leukaemia stem cells (LSCs) that are not fully addicted to BCR-ABL1. Recent conceptual advances in both CML biology and therapeutic intervention have increased the potential for the elimination of CML cells, including LSCs, through simultaneous inhibition of BCR-ABL1 and other newly identified, crucial targets.
Journal Article
The prognostic value of 19S ATPase proteasome subunits in acute myeloid leukemia and other forms of cancer
by
Olivas, Idaly M.
,
Rubio, Andres J.
,
Keivan, Mehrshad
in
19S proteasome
,
Apoptosis
,
Biomarkers
2023
The ubiquitin-proteasome system (UPS) is an intracellular organelle responsible for targeted protein degradation, which represents a standard therapeutic target for many different human malignancies. Bortezomib, a reversible inhibitor of chymotrypsin-like proteasome activity, was first approved by the FDA in 2003 to treat multiple myeloma and is now used to treat a number of different cancers, including relapsed mantle cell lymphoma, diffuse large B-cell lymphoma, colorectal cancer, and thyroid carcinoma. Despite the success, bortezomib and other proteasome inhibitors are subject to severe side effects, and ultimately, drug resistance. We recently reported an oncogenic role for non-ATPase members of the 19S proteasome in chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and several different solid tumors. In the present study, we hypothesized that ATPase members of the 19S proteasome would also serve as biomarkers and putative therapeutic targets in AML and multiple other cancers.
We used data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) available at UALCAN and/or GEPIA2 to assess the expression and prognostic value of proteasome 26S subunit, ATPases 1-6 (PSMC1-6) of the 19S proteasome in cancer. UALCAN was also used to associate
-6 mRNA expression with distinct clinicopathological features. Finally, cBioPortal was employed to assess genomic alterations of
genes across different cancer types.
The mRNA and protein expression of
-6 of the 19S proteasome were elevated in several cancers compared with normal controls, which often correlated with worse overall survival. In contrast, AML patients demonstrated reduced expression of these proteasome subunits compared with normal mononuclear cells. However, AML patients with high expression of
-5 had worse outcomes.
Altogether, our data suggest that components of the 19S proteasome could serve as prognostic biomarkers and novel therapeutic targets in AML and several other human malignancies.
Journal Article
Advances in the treatment of chronic myeloid leukemia
by
Eiring, Anna M
,
Deininger, Michael W
,
Khorashad, Jamshid S
in
Administrative support
,
Antineoplastic Agents - administration & dosage
,
Biomedicine
2011
Although imatinib is firmly established as an effective therapy for newly diagnosed patients with chronic myeloid leukemia (CML), the field continues to advance on several fronts. In this minireview we cover recent results of second generation tyrosine kinase inhibitors in newly diagnosed patients, investigate the state of strategies to discontinue therapy and report on new small molecule inhibitors to tackle resistant disease, focusing on agents that target the T315I mutant of BCR-ABL. As a result of these advances, standard of care in frontline therapy has started to gravitate toward dasatinib and nilotinib, although more observation is needed to fully support this. Stopping therapy altogether remains a matter of clinical trials, and more must be learned about the mechanisms underlying the persistence of leukemic cells with treatment. However, there is good news for patients with the T315I mutation, as effective drugs such as ponatinib are on their way to regulatory approval. Despite these promising data, accelerated or blastic phase disease remains a challenge, possibly due to BCR-ABL-independent resistance.
Journal Article
Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia
2015
Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCR-ABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry,
in vitro
reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays and hydrogen–deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from chronic myeloid leukemia (CML) patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μ
M
) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells. Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation.
Journal Article