Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"El Amraoui, Laaziz"
Sort by:
Impact of synthetic space-borne NO2 observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO2 analyses
by
Attié, Jean-Luc
,
Curier, Lyana
,
Segers, Arjo
in
Air pollution
,
Atmosphere
,
Atmospheric chemistry
2019
We present an Observing System Simulation Experiment (OSSE) dedicated to the evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for tropospheric nitrogen dioxide (NO2). Sentinel-4 is a geostationary (GEO) mission covering the European continent, providing observations with high temporal resolution (hourly). Sentinel-5P is a low Earth orbit (LEO) mission providing daily observations with a global coverage. The OSSE experiment has been carefully designed, with separate models for the simulation of observations and for the assimilation experiments and with conservative estimates of the total observation uncertainties. In the experiment we simulate Sentinel-4 and Sentinel-5P tropospheric NO2 columns and surface ozone concentrations at 7 by 7 km resolution over Europe for two 3-month summer and winter periods. The synthetic observations are based on a nature run (NR) from a chemistry transport model (MOCAGE) and error estimates using instrument characteristics. We assimilate the simulated observations into a chemistry transport model (LOTOS-EUROS) independent of the NR to evaluate their impact on modelled NO2 tropospheric columns and surface concentrations. The results are compared to an operational system where only ground-based ozone observations are ingested. Both instruments have an added value to analysed NO2 columns and surface values, reflected in decreased biases and improved correlations. The Sentinel-4 NO2 observations with hourly temporal resolution benefit modelled NO2 analyses throughout the entire day where the daily Sentinel-5P NO2 observations have a slightly lower impact that lasts up to 3–6 h after overpass. The evaluated benefits may be even higher in reality as the applied error estimates were shown to be higher than actual errors in the now operational Sentinel-5P NO2 products. We show that an accurate representation of the NO2 profile is crucial for the benefit of the column observations on surface values. The results support the need for having a combination of GEO and LEO missions for NO2 analyses in view of the complementary benefits of hourly temporal resolution (GEO, Sentinel-4) and global coverage (LEO, Sentinel-5P).
Journal Article
Intercontinental transport of biomass burning pollutants over the Mediterranean Basin during the summer 2014 ChArMEx-GLAM airborne campaign
2018
The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign was set up in August 2014, as part of the Chemistry and Aerosol Mediterranean Experiment (ChArMEx) project. This campaign aimed to study the chemical variability of gaseous pollutants and aerosols in the troposphere along a west–east transect above the Mediterranean Basin (MB). In the present work, we focus on two biomass burning events detected at 5.4 and 9.7 km altitude above sea level (a.s.l.) over Sardinia (from 39∘12′ N–9∘15′ E to 35∘35′ N–12∘35′ E and at 39∘30′ N–8∘25′ E, respectively). Concentration variations in trace gas carbon monoxide (CO), ozone (O3) and aerosols were measured thanks to the standard instruments on board the Falcon 20 aircraft operated by the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) and the Spectromètre InfraRouge In situ Toute Altitude (SPIRIT) developed by LPC2E. Twenty-day backward trajectories with Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle) help to understand the transport processes and the origin of the emissions that contributed to this pollution detected above Sardinia. Biomass burning emissions came (i) on 10 August from the North American continent with air masses transported during 5 days before arriving over the MB, and (ii) on 6 August from Siberia, with air masses travelling during 12 days and enriched in fire emission products above Canada 5 days before arriving over the MB. In combination with the Global Fire Assimilation System (GFAS) inventory and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite fire locations, FLEXPART reproduces well the contribution of those fires to CO and aerosols enhancements under adjustments of the injection height to 10 km in both cases and application of an amplification factor of 2 on CO GFAS emissions for the 10 August event. The chemistry transport model (CTM) MOCAGE is used as a complementary tool for the case of 6 August to confirm the origin of the emissions by tracing the CO global atmospheric composition reaching the MB. For this event, both models agree on the origin of air masses with CO concentrations simulated with MOCAGE lower than the observed ones, likely caused by the coarse model horizontal resolution that yields the dilution of the emissions and diffusion during transport. In combination with wind fields, the analysis of the transport of the air mass documented on 6 August suggests the subsidence of CO pollution from Siberia towards North America and then a transport to the MB via fast jet winds located at around 5.5 km in altitude. Finally, using the ratio ΔO3 ∕ ΔCO, the plume age can be estimated and the production of O3 during the transport of the air mass is studied using the MOCAGE model.
Journal Article
Future changes in surface ozone over the Mediterranean Basin in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)
by
Attié, Jean-Luc
,
El Amraoui, Laaziz
,
Ricaud, Philippe
in
Aerosols
,
Annual variations
,
Atmospheric chemistry
2018
In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr, last access: 22 June 2018) project, we study the evolution of surface ozone over the Mediterranean Basin (MB) with a focus on summertime over the time period 2000–2100, using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) outputs from 13 models. We consider three different periods (2000, 2030 and 2100) and the four Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) to study the changes in the future ozone and its budget. We use a statistical approach to compare and discuss the results of the models. We discuss the behavior of the models that simulate the surface ozone over the MB. The shape of the annual cycle of surface ozone simulated by ACCMIP models is similar to the annual cycle of the ozone observations, but the model values are biased high. For the summer, we found that most of the models overestimate surface ozone compared to observations over the most recent period (1990–2010). Compared to the reference period (2000), we found a net decrease in the ensemble mean surface ozone over the MB in 2030 (2100) for three RCPs: −14 % (−38 %) for RCP2.6, −9 % (−24 %) for RCP4.5 and −10 % (−29 %) for RCP6.0. The surface ozone decrease over the MB for these scenarios is much more pronounced than the relative changes of the global tropospheric ozone burden. This is mainly due to the reduction in ozone precursors and to the nitrogen oxide (NOx = NO + NO2)-limited regime over the MB. For RCP8.5, the ensemble mean surface ozone is almost constant over the MB from 2000 to 2100. We show how the future climate change and in particular the increase in methane concentrations can offset the benefits from the reduction in emissions of ozone precursors over the MB.
Journal Article
Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth
by
Piacentini, Andrea
,
Cariolle, Daniel
,
Attié, Jean-Luc
in
Aeronautics
,
Aerosol concentrations
,
Aerosol optical depth
2016
In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We also examine how the assimilation can influence the modelled aerosol vertical distribution. The results show that a 2-D continuous AOD assimilation can improve the 3-D vertical profile, as a result of differential horizontal transport of aerosols in the model.
Journal Article
Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts
2017
We use the technique of Observing System Simulation Experiments (OSSEs) to quantify the impact of spaceborne carbon monoxide (CO) total column observations from the Sentinel-5 Precursor (S-5P) platform on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode associated with extremely hot and dry weather conditions. We describe different elements of the OSSE: (i) the nature run (NR), i.e., the truth; (ii) the CO synthetic observations; (iii) the assimilation run (AR), where we assimilate the observations of interest; (iv) the control run (CR), in this study a free model run without assimilation; and (v) efforts to establish the fidelity of the OSSE results. Comparison of the results from AR and the CR, against the NR, shows that CO total column observations from S-5P provide a significant benefit (at the 99 % confidence level) at the surface, with the largest benefit occurring over land in regions far away from emission sources. Furthermore, the S-5P CO total column observations are able to capture phenomena such as the forest fires that occurred in Portugal during northern summer 2003. These results provide evidence of the benefit of S-5P observations for monitoring processes contributing to atmospheric pollution.
Journal Article
Added Value of Aerosol Observations of a Future AOS High Spectral Resolution Lidar with Respect to Classic Backscatter Spaceborne Lidar Measurements
2023
In the context of the Atmosphere Observing System (AOS) international program, a new-generation spaceborne lidar is expected to be in polar orbit for deriving new observations of aerosol and clouds. In this work, we analyze the added values of these new observations for characterizing aerosol vertical distribution. For this, synthetic observations are simulated using the BLISS lidar simulator in terms of the backscatter coefficient at 532 nm. We consider two types of lidar instruments, an elastic backscatter lidar instrument and a high spectral resolution lidar (HSRL). These simulations are performed with atmospheric profiles from a nature run (NR) modeled by the MOCAGE chemical transport model. In three case studies involving large events of different aerosol species, the added value of the HSRL channel (for measuring aerosol backscatter profiles with respect to simple backscatter measurements) is shown. Observations independent of an a priori lidar ratio assumption, as done typically for simple backscattering instruments, allow probing the vertical structures of aerosol layers without divergence, even in cases of intense episodes. A 5-day study in the case of desert dust completes the study of the added value of the HSRL channel with relative mean bias from the NR of the order of 1.5%. For low abundances, relative errors in the backscatter coefficient profiles may lay between +40% and −40%, with mean biases between +5% and −5%.
Journal Article
A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model
by
Plu, Matthieu
,
El Amraoui, Laaziz
,
Cornut, Flavien
in
aerosol
,
aerosol optical depth
,
Aerosols
2022
In this study we present a pre-operational forecasting assimilation system of different types of aerosols. This system has been developed within the chemistry-transport model of Météo-France, MOCAGE, and uses the assimilation of the Aerosol Optical Depth (AOD) from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard both Terra and Aqua. It is based on the AOD assimilation system within the MOCAGE model. It operates on a daily basis with a global configuration of 1∘×1∘ (longitude × latitude). The motivation of such a development is the capability to predict and anticipate extreme events and their impacts on the air quality and the aviation safety in the case of a huge volcanic eruption. The validation of the pre-operational system outputs has been done in terms of AOD compared against the global AERONET observations within two complete years (January 2018–December 2019). The comparison between both datasets shows that the correlation between the MODIS assimilated outputs and AERONET over the whole period of study is 0.77, whereas the biases and the RMSE (Root Mean Square Error) are 0.006 and 0.135, respectively. The ability of the pre-operational system to predict extreme events in near real time such as the desert dust transport and the propagation of the biomass burning was tested and evaluated. We particularly presented and documented the desert dust outbreak which occurred over Greece in late March 2018 as well as the wildfire event which happened on Australia between July 2019 and February 2020. We only presented these two events, but globally the assimilation chain has shown that it is capable of predicting desert dust events and biomass burning aerosols which happen all over the globe.
Journal Article
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
by
Piacentini, Andrea
,
Attié, Jean-Luc
,
Frebourg, Nicolas
in
Aerosol concentrations
,
Aerosol observations
,
Aerosol optical depth
2020
This paper presents the first results about the assimilation of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) extinction coefficient measurements onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite in the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) chemistry transport model of Météo-France. This assimilation module is an extension of the aerosol optical depth (AOD) assimilation system already presented by Sič et al. (2016). We focus on the period of the TRAQA (TRAnsport à longue distance et Qualité de l’Air dans le bassin méditerranéen) field campaign that took place during summer 2012. This period offers the opportunity to have access to a large set of aerosol observations from instrumented aircraft, balloons, satellite and ground-based stations. We evaluate the added value of CALIOP assimilation with respect to the model free run by comparing both fields to independent observations issued from the TRAQA field campaign. In this study we focus on the desert dust outbreak which happened during late June 2012 over the Mediterranean Basin (MB) during the TRAQA campaign. The comparison with the AERONET (Aerosol Robotic Network) AOD measurements shows that the assimilation of CALIOP lidar observations improves the statistics compared to the model free run. The correlation between AERONET and the model (assimilation) is 0.682 (0.753); the bias and the root mean square error (RMSE), due to CALIOP assimilation, are reduced from −0.063 to 0.048 and from 0.183 to 0.148, respectively. Compared to MODIS (Moderate-resolution Imaging Spectroradiometer) AOD observations, the model free run shows an underestimation of the AOD values, whereas the CALIOP assimilation corrects this underestimation and shows a quantitative good improvement in terms of AOD maps over the MB. The correlation between MODIS and the model (assimilation) during the dust outbreak is 0.47 (0.52), whereas the bias is −0.18 (−0.02) and the RMSE is 0.36 (0.30). The comparison of in situ aircraft and balloon measurements to both modelled and assimilated outputs shows that the CALIOP lidar assimilation highly improves the model aerosol field. The evaluation with the LOAC (Light Optical Particle Counter) measurements indicates that the aerosol vertical profiles are well simulated by the direct model but with a general underestimation of the aerosol number concentration, especially in the altitude range 2–5 km. The CALIOP assimilation improves these results by a factor of 2.5 to 5. Analysis of the vertical distribution of the desert aerosol concentration shows that the aerosol dust transport event is well captured by the model but with an underestimated intensity. The assimilation of CALIOP observations allows the improvement of the geographical representation of the event within the model as well as its intensity by a factor of 2 in the altitude range 1–5 km.
Journal Article
Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements
by
Bugliaro, Luca
,
Plu, Matthieu
,
El Amraoui, Laaziz
in
Aerosol measurements
,
Aerosol optical depth
,
Aerosols
2021
Numerical dispersion models are used operationally worldwide to mitigate the effect of volcanic ash on aviation. In order to improve the representation of the horizontal dispersion of ash plumes and of the 3D concentration of ash, a study was conducted using the MOCAGE model during the European Natural Airborne Disaster Information and Coordination System for Aviation (EUNADICS-AV) project. Source term modelling and assimilation of different data were investigated. A sensitivity study of source term formulation showed that a resolved source term, using the FPLUME plume rise model in MOCAGE, instead of a parameterised source term, induces a more realistic representation of the horizontal dispersion of the ash plume. The FPLUME simulation provides more concentrated and focused ash concentrations in the horizontal and the vertical dimensions than the other source term. The assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth has an impact on the horizontal dispersion of the plume, but this effect is rather low and local compared to source term improvement. More promising results are obtained with the continuous assimilation of ground-based lidar profiles, which improves the vertical distribution of ash and helps in reaching realistic values of ash concentrations. Using this configuration, the effect of assimilation may last for several hours and it may propagate several hundred kilometres downstream of the lidar profiles.
Journal Article
An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
2021
High-quality volcanic ash forecasts are crucial to minimize the economic impact of volcanic hazards on air traffic. Decision-making is usually based on numerical dispersion modelling with only one model realization. Given the inherent uncertainty of such an approach, a multi-model multi-source term ensemble has been designed and evaluated for the Eyjafjallajökull eruption in May 2010. Its use for flight planning is discussed. Two multi-model ensembles were built: the first is based on the output of four dispersion models and their own implementation of ash ejection. All a priori model source terms were constrained by observational evidence of the volcanic ash cloud top as a function of time. The second ensemble is based on the same four dispersion models, which were run with three additional source terms: (i) a source term obtained from a model background constrained with satellite data (a posteriori source term), (ii) its lower-bound estimate and (iii) its upper-bound estimate. The a priori ensemble gives valuable information about the probability of ash dispersion during the early phase of the eruption, when observational evidence is limited. However, its evaluation with observational data reveals lower quality compared to the second ensemble. While the second ensemble ash column load and ash horizontal location compare well to satellite observations, 3D ash concentrations are negatively biased. This might be caused by the vertical distribution of ash, which is too much diluted in all model runs, probably due to defaults in the a posteriori source term and vertical transport and/or diffusion processes in all models. Relevant products for the air traffic management are horizontal maps of ash concentration quantiles (median, 75 %, 99 %) at a finely resolved flight level grid as well as cross sections. These maps enable cost-optimized consideration of volcanic hazards and could result in much fewer flight cancellations, reroutings and traffic flow congestions. In addition, they could be used for route optimization in the areas where ash does not pose a direct and urgent threat to aviation, including the aspect of aeroplane maintenance.
Journal Article