Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
46
result(s) for
"El Chehadeh, Salima"
Sort by:
Pathogenic variants affecting the TB5 domain of the fibrillin-1 protein: not only in geleophysic/acromicric dysplasias but also in Marfan syndrome
by
Arnaud, Pauline
,
Mougin, Zakaria
,
Boileau, Catherine
in
Amino acids
,
Aneurysms
,
Bioinformatics
2024
BackgroundMarfan syndrome (MFS) is a multisystem disease with a unique combination of skeletal, cardiovascular and ocular features. Geleophysic/acromicric dysplasias (GPHYSD/ACMICD), characterised by short stature and extremities, are described as ‘the mirror image’ of MFS. The numerous FBN1 pathogenic variants identified in MFS are located all along the gene and lead to the same final pathogenic sequence. Conversely, in GPHYSD/ACMICD, the 28 known heterozygous FBN1 pathogenic variants all affect exons 41–42 encoding TGFβ-binding protein-like domain 5 (TB5).MethodsSince 1996, more than 5000 consecutive probands have been referred nationwide to our laboratory for molecular diagnosis of suspected MFS.ResultsWe identified five MFS probands carrying distinct heterozygous pathogenic in-frame variants affecting the TB5 domain of FBN1. The clinical data showed that the probands displayed a classical form of MFS. Strikingly, one missense variant affects an amino acid that was previously involved in GPHYSD.ConclusionSurprisingly, pathogenic variants in the TB5 domain of FBN1 can lead to two opposite phenotypes: GPHYSD/ACMICD and MFS, suggesting the existence of different pathogenic sequences with the involvement of tissue specificity. Further functional studies are ongoing to determine the precise role of this domain in the physiopathology of each disease.
Journal Article
Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype correlations
by
Aubert-Lenoir, Marion
,
Philippe, Christophe
,
Foliguet, Bernard
in
Abnormalities, Multiple - genetics
,
Bioinformatics
,
Cohort Studies
2021
PurposeMolecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses.MethodsWe performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants.ResultssES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%).ConclusionsThis method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.
Journal Article
Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing
2014
Background Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. Methods We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. Results We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients’ clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. Conclusions With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.
Journal Article
Type I Interferonopathy due to a Homozygous Loss-of-Inhibitory Function Mutation in STAT2
by
de Saint-Martin, Anne
,
Marsh, Joseph A.
,
Crow, Yanick J.
in
Antibodies - genetics
,
Biochemistry, Molecular Biology
,
Biomedical and Life Sciences
2023
Purpose
STAT2 is both an effector and negative regulator of type I interferon (IFN-I) signalling. We describe the characterization of a novel homozygous missense STAT2 substitution in a patient with a type I interferonopathy.
Methods
Whole-genome sequencing (WGS) was used to identify the genetic basis of disease in a patient with features of enhanced IFN-I signalling. After stable lentiviral reconstitution of STAT2-null human fibrosarcoma U6A cells with STAT2 wild type or p.(A219V), we performed quantitative polymerase chain reaction, western blotting, immunofluorescence, and co-immunoprecipitation to functionally characterize the p.(A219V) variant.
Results
WGS identified a rare homozygous single nucleotide transition in
STAT2
(c.656C > T), resulting in a p.(A219V) substitution, in a patient displaying developmental delay, intracranial calcification, and up-regulation of interferon-stimulated gene (ISG) expression in blood. In vitro studies revealed that the STAT2 p.(A219V) variant retained the ability to transduce an IFN-I stimulus. Notably, STAT2 p.(A219V) failed to support receptor desensitization, resulting in sustained STAT2 phosphorylation and ISG up-regulation. Mechanistically, STAT2 p.(A219V) showed defective binding to ubiquitin specific protease 18 (USP18), providing a possible explanation for the chronic IFN-I pathway activation seen in the patient.
Conclusion
Our data indicate an impaired negative regulatory role of STAT2 p.(A219V) in IFN-I signalling and that mutations in STAT2 resulting in a type I interferonopathy state are not limited to the previously reported R148 residue. Indeed, structural modelling highlights at least 3 further residues critical to mediating a STAT2-USP18 interaction, in which mutations might be expected to result in defective negative feedback regulation of IFN-I signalling.
Journal Article
SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice
2022
SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in
SLITRK2
on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders. Functional studies showed that some variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Strikingly, these variations abolished the ability of SLITRK2 wild-type to reduce the levels of the receptor tyrosine kinase TrkB in neurons. Moreover,
Slitrk2
conditional knockout mice exhibited impaired long-term memory and abnormal gait, recapitulating a subset of clinical features of patients with SLITRK2 variants. Furthermore, impaired excitatory synapse maintenance induced by hippocampal CA1-specific cKO of Slitrk2 caused abnormalities in spatial reference memory. Collectively, these data suggest that SLITRK2 is involved in X-linked neurodevelopmental disorders that are caused by perturbation of diverse facets of SLITRK2 function.
The protein SLITRK2 plays an important role in synaptic communication. This study identifies X-linked SLITRK2 variants that underlie neurodevelopmental disorders by impairing excitatory synapses.
Journal Article
Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis
by
Jean-Marçais, Nolwenn
,
Philippe, Christophe
,
Jouan, Thibaud
in
631/1647/514/1948
,
631/208/2489/144
,
692/699/375
2018
Purpose
Congenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics—50% of patients still have no molecular diagnosis after a long and stressful diagnostic “odyssey.” Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.
Methods
This retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for patients enrolled in the third year are not yet available.
Results
Of the 416 patients included, data for 156 without a diagnosis were reanalyzed. We obtained 24 (15.4%) additional diagnoses: 12 through the usual diagnostic process (7 new publications, 4 initially misclassified, and 1 copy-number variant), and 12 through translational research by international data sharing. The final yield of positive results was 27.9% through a strict diagnostic approach, and 2.9% through an additional research strategy.
Conclusion
This article highlights the effectiveness of periodically combining diagnostic reinterpretation of clinical WES data with translational research involving data sharing for candidate genes.
Journal Article
IRAK1 Duplication in MECP2 Duplication Syndrome Does Not Increase Canonical NF-κB–Induced Inflammation
by
Van Esch, Hilde
,
Wagner, Dimitrios L.
,
Jezela-Stanek, Aleksandra
in
Agonists
,
Biomedical and Life Sciences
,
Biomedicine
2023
Purpose
Besides their developmental and neurological phenotype, most patients with
MECP2/IRAK1
duplication syndrome present with recurrent and severe infections, accompanied by strong inflammation. Respiratory infections are the most common cause of death. Standardized pneumological diagnostics, targeted anti-infectious treatment, and knowledge of the underlying pathomechanism that triggers strong inflammation are unmet clinical needs. We investigated the influence of IRAK1 overexpression on the canonical NF-κB signaling as a possible cause for excessive inflammation in these patients.
Methods
NF-κB signaling was examined by measuring the production of proinflammatory cytokines and evaluating the IRAK1 phosphorylation and degradation as well as the IκBα degradation upon stimulation with IL-1β and TLR agonists in SV40-immortalized fibroblasts, PBMCs, and whole blood of 9 patients with
MECP2/IRAK1
duplication syndrome, respectively.
Results
Both,
MECP2/IRAK1
-duplicated patients and healthy controls, showed similar production of IL-6 and IL-8 upon activation with IL-1β and TLR2/6 agonists in immortalized fibroblasts. In PBMCs and whole blood, both patients and controls had a similar response of cytokine production after stimulation with IL-1β and TLR4/2/6 agonists. Patients and controls had equivalent patterns of IRAK1 phosphorylation and degradation as well as IκBα degradation upon stimulation with IL-1β.
Conclusion
Patients with
MECP2/IRAK1
duplication syndrome do not show increased canonical NF-κB signaling in immortalized fibroblasts, PBMCs, and whole blood. Therefore, we assume that these patients do not benefit from a therapeutic suppression of this pathway.
Journal Article
Aarskog-Scott syndrome: a clinical study based on a large series of 111 male patients with a pathogenic variant in FGD1 and management recommendations
by
Cormier-Daire, Valérie
,
Ciorna Monferrato, Viorca
,
El Chehadeh, Salima
in
Aarskog syndrome
,
Abnormalities, Multiple - diagnosis
,
Abnormalities, Multiple - genetics
2025
BackgroundAarskog-Scott syndrome (AAS) is a rare condition with multiple congenital anomalies, caused by hemizygote variants in the FGD1 gene. Its description was based mostly on old case reports, in whom a molecular diagnosis was not always available, or on small series. The aim of this study was to better delineate the phenotype and the natural history of AAS and to provide clues for the diagnosis and the management of the patients.MethodsPhenotypic characterisation of the largest reported AAS cohort, comprising 111 male patients with proven causative variants in FGD1, through comprehensive analyses of clinical data including congenital anomalies, growth and neurodevelopment. Review of photographs and radiographs by experts in dysmorphology and skeletal disorders.ResultsThis study refines the phenotypic spectrum of AAS, with the description of new morphological and radiological features, and refines the prevalence of the features. Short stature is less frequent than previously reported and has a prenatal onset in more than half of the patients. The growth has a specific course with a catch-up during the first decade often leading to low-normal stature in adulthood. Whereas intellectual disability is rare, patients with AAS have a high prevalence of specific learning difficulties and attention hyperactivity disorder. In light of this better knowledge of AAS, we provide management recommendations.ConclusionA better knowledge of the natural history and phenotypic spectrum of AAS will be helpful for the clinical diagnosis and for the interpretation of FGD1 variants using a retrophenotyping strategy, which is becoming the most common way of diagnosis nowadays. Recommendations for care will improve the management of the patients.
Journal Article
An Improved Method to Extract DNA from 1 ml of Uncultured Amniotic Fluid from Patients at Less than 16 Weeks’ Gestation
2013
The aim of this study was to develop an improved technique for DNA extraction from 1 ml of uncultured AF from patients with a gestational age less than 16 weeks and to allow the use of array-CGH without DNA amplification. The DNA extraction protocol was tested in a series of 90 samples including 41 of uncultured AF at less than 16 weeks of gestation. Statistical analyses were performed using linear regression. To evaluate the sensitivity and the specificity of array-CGH on 1 ml of uncultured AF, five samples with an abnormal karyotype (three with aneuploidy, two with structural abnormalities) and five with a normal karyotype were studied. This protocol was reproducible and we were able to show a great improvement with higher yield of DNA obtained from all patients, including those with a gestational age less than 16 weeks (p = 0.003). All chromosomal abnormalities were detected and characterized by array-CGH and normal samples showed normal profiles. This new DNA extraction protocol associated with array-CGH analysis could be used in prenatal testing even when gestational age is less than 16 weeks, especially in cases with abnormal ultrasound findings.
Journal Article
MYT1L-associated neurodevelopmental disorder: description of 40 new cases and literature review of clinical and molecular aspects
2022
Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype–phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2–3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.
Journal Article