Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "El-Mahrouk, El-Sayed Mohamed"
Sort by:
Evaluation of the growth, enzymatic activity, electrolyte leakage, and phytoremediation efficiency of Conocarpus erectus under cadmium and lead stress
Contamination of agricultural soil by heavy metals poses a significant threat to soil quality and crop yields. Using plants as a natural remediation approach attracts researchers’ attention around the world. A 16-month pot experiment was conducted using Conocarpus erectus in a randomized complete block design. The growth, enzymatic activity, electrolyte leakage, and remediation potential were estimated under Cd nitrate]40 low (L), 60 medium (M), 80 high (H) mg/kg soil [and Pb nitrate]400 (L), 700 (M), 1,000 (H) mg/kg soil [applied individually and in combination. Conocarpus erectus demonstrated a good tolerance (over 70%) against lower and medium cadmium (Cd) and lead (Pb) levels and a medium resistance against high Cd and Pb levels, with a survival rate of 100% under all the treatments used. The most negative treatment on the growth traits and tolerance of C. erectus was (H) Cd and (H) Pb, which reduced plant height; chlorophyll index; dry weights of the leaves, stems, and roots; root length; and tolerance index of biomass and roots by 25.87%, 48.97%, 50.56%, 47.25%, 58.67%, 50.18%, 51.00%, and 50% in comparison to the respective control, consecutively. Relative to the control, all Cd and Pb applications increased polyphenol oxidase (PPO), peroxidase (POD), and catalase (CAT) activities, and the increment was parallel up to medium Cd and Pb levels and then decreased with their high levels but still higher than the control. Electrolyte leakage (EL) was upheaved by raising the levels of Cd and Pb, and it reached the maximum (52.79%) at the (H) Cd (H) Pb treatment. Cd and Pb in the leaves, stems, and roots were boosted by raising their levels in the treatments. Conocarpus erectus is considered a phytoextractor for the Cd levels used because the bioconcentration factor of the stem (BCF s ) and the translocation factor (TF) of Cd were >1, and it is a suitable plant for Pb phytoextraction at (L) Pb, (M) Pb, and (M) Cd (M) Pb levels because its Pb BCF s and bioconcentration factor of the root (BCF r ) were <1 and its Pb TF was >1. On the other hand, C. erectus is considered a phytostabilizator for Pb at (H) Pb, (L) Cd, (L) Pb, and (H) Cd (H) Pb levels because its Pb BCF s , BCF r , and TF were <1.
Response of Salvia officinalis to zinc and silicon nanoparticles and pollen extract as alternates to traditional fertilizers
Salvia officinalis is used in a variety of medicinal and aromatic products. The effects of various treatments on sage ( Salvia officinalis ) plants were investigated in an open-field experiment conducted between 2021 and 2022. During the experiment, ZnO nanoparticles (NPs) were used at concentrations of 1.0 and 1.5 g/L, SiO 2 NPs were used at concentrations of 0.1 and 0.2 g/L, and date palm pollen extracts (DPE) were used at concentrations of 15 and 25 g/L, in combination with NPK fertilizers at 75%, 50%, and 25%, respectively, with a control group of 100% NPK fertilizer. A treatment consisting of 75% NPK, 15 g/L DPE, 1.0 g/L ZnO NPs, and 0.1 g/L SiO 2 NPs significantly improved vegetative traits and essential oil yield. Compared to the control in the growing seasons of 2021 and 2022, this treatment resulted in increases in plant height, chlorophyll index, fresh and dry weights, and essential oil yield (EOY) per plant of 23.40% and 28.30%, 27.56% and 26.54%, 42.17% and 42.95%, 64.10% and 62.79%, and 93.38% and 91.08%, respectively. Combinations of 25% NPK + 25 g/L DPE + 1.5 g/L ZnO nanoparticles + 0.2 g/L SiO 2 NPs and 75% NPK + 0.1 g/L SiO 2 NPs produced the highest essential oil percentage (EO%). During the experimental seasons, these treatments increased EO% by 15.45% and 26.25%. In total, 58 substances were identified across the different treatments in the essential oil composition analysis. There were 11 compounds in the 25% NPK, 25 g/L DPE, 1.5 g/L ZnO NPs, and 0.2 g/L SiO 2 NPs treatments, and 32 in the 50% NPK, 25 g/L DPE, and 0.2 g/L SiO 2 NPs treatments. Oxygenated hydrocarbons, sesquiterpenes, and monoterpenes varied by application. Thujone, camphor, manool, and ledol were the major constituents of the EO. Leaf chemical composition, antioxidant activity, and total phenolic compounds were significantly influenced by the treatments. In combination with DPE, ZnO and SiO 2 NPs reduced the need for higher amounts of mineral NPK fertilizers. These agents can therefore be useful for advancing sustainable agricultural practices in novel and advantageous ways.
Growth, chemical, and biochemical composition of Conocarpus erectus L. in response to NPK fertilizers and extracts of active dry yeast, seaweeds, and green tea
Conocarpus erectus L. is one of the ornamental shrubs or trees that are utilized in different aspects in landscape (gardens, cities, roads, etc.). Fertilization program is an essential factor affecting the aesthetic characters of this plant species. Pots experiment was conducted in a randomized completed split plot design with the aim to study the effects of NPK fertilizers at the levels of 100%, 75%, and 50% of the suggested doses of 18, 12, and 6 g/plant from ammonium sulfate, calcium superphosphate, and potassium sulfate, respectively, as well as natural extracts as active dry yeast (ADY) at 1 or 3 g L -1 , green tea (GT) at 0.2 or 0.5 g L -1 , and seaweeds (SW) at 1 or 1.5 mL L -1 , and their interaction on the growth and attributes of C. erectus in the 2022 and 2023 seasons. The results indicated that 100% NPK dose produced the highest significant values of plant height, number of branches, primary stem diameter, area/leaf, chlorophyll index, shoots and root fresh and dry weight, percentage of relative water content (in the second season), N, P, K, and total carbohydrates in comparison with 75% and 50% NPK doses in the both seasons. Moreover, 100% NPK increased the activity of peroxidase enzyme, phenol compounds, and antioxidant activity over the 75% and 50% NPK doses. Conversely, 75% NPK recorded a high relative water content (in the first season) and activity of catalase and polyphenol oxidase enzymes over the 100% and 50% NPK doses. All treatments of natural extracts had positive impacts on the studied parameters previously mentioned when compared to untreated control. Among the natural extracts used, 3 g L -1 ADY was the best application to increase the studied traits, except for leaf area and P%, whose higher significant values resulted from treatments with application of SW extract at 1.5 mL L -1 and 1 g L -1 ADY + 0.2 g L -1 GT + 1 mL L -1 SW, respectively. Moreover, the 100% NPK dose combined with 3 gL -1 ADY was the best combination to execute the highest values of the aforementioned traits studied, except the primary stem diameter, P%, and PPO activity, whereas the highest values resulted from treatments with 100% NPK dose + 1.5 mL L -1 SW, 1 g L -1 ADY + 0.2 g L -1 GT + 1 mL L -1 SW, and 75% NPK dose + 3 g L -1 ADY, respectively. Therefore, 100% NPK treatment combined with 3 g L -1 ADY is recommended to fertilize C. erectus plants in order to reduce the overuse of chemical fertilizers and to minimize habitat contamination for the maintenance of the whole environment.
Application of ZnO NPs, SiO2 NPs and Date Pollen Extract as Partial Substitutes to Nitrogen, Phosphorus, and Potassium Fertilizers for Sweet Basil Production
The reduction in mineral fertilizer usage is crucial to the production of medicinal and aromatic products for safety and health purposes. Presently, nanotechnology and the utilization of natural extracts have been extensively studied due to their significant contribution. Ocimum basilicum is commonly employed for various medicinal and aromatic applications. Therefore, randomized complete block design field experiments containing 10 treatments were conducted during the 2021 and 2022 seasons to investigate the effect of nanoparticles (NPs) of ZnO (1.5 and 2.0 g/L) and SiO2 (100 and 150 mg/L) and date palm pollen extract (DPPE) at 10 and 20 g/L either alone or in combination with the ¾ or ½ NPK recommended dose (RD). The NPK RD was served as a control treatment on basil plant production in each season. The effectiveness of ZnO NPs, SiO2 NPs, and DPPE for the decrease in NPK utilization was evaluated. Meanwhile, the most effective treatment for vegetative traits (except for plant height), essential oil %, and yield was ½ NPK RD + 20 g/L DPPE + 2.0 g/L ZnO NPs. Such a treatment increased the branch number/plant, main stem diameter, relevant chlorophyll content, fresh weight/plant, dry weight/plant, essential oil %, and essential oil yield/plant by 21.00 and 9.94%, 58.70 and 40.00%, 20.69 and 15.83%, 68.83 and 58.28%, 48.70 and 56.16%, 45.71 and 35.53%, and 113.22 and 110.32% over the control in the two seasons, respectively. For total phenol and antioxidant activity, the most effective treatments were the ¾ NPK +1.5 g/L ZnO NPs and ½ NPK +2.0 g/L ZnO NPs, respectively. Simultaneously, essential oil composition (with their compound numbers identified (11–29 for control and ¾ NPK RD + 1.5 g/L ZnO NPs)) and the percentage of total compounds, monoterpene hydrocarbons, sesquiterpene hydrocarbons, and oxygenated hydrocarbons were varied among the used applications. The major observed compounds (>8%) estragole, methyl eugenol, linalool, cineole, and caryophyllene were found in different treatments. Thus, the findings of this study indicate the favorable utilization of ZnO NPs, SiO2 NPs, and DPPE in reducing the application of NPK, which may present a novel strategy and beneficial approach.
Performance of growth and remediation potency of Jacaranda mimosifolia in cadmium and lead contaminated soil
In a 16-month study addressing global agricultural soil heavy metal contamination, researchers explored plant-centered solutions using Jacaranda plants. The impact of different combinations of cadmium nitrate (40, 80, and 120 mg) and lead nitrate (400, 800, and 1200 mg/kg soil) were evaluated relative to Jacaranda’s remediation capabilities. Employing a randomized complete block design with 8 applications across 3 repetitions, the study assessed growth traits and chemical characteristics. Untreated plants showed higher growth values, contrasting with reduced values in plants exposed to elevated cadmium (Cd) and lead (Pb) levels. For instance, the treatment with 120 mg Cd/kg soil + 1200 mg Pb/kg soil led to a 28% reduction in plant height, 13% in main stem diameter, 41% in branch number, and 35% in leaf area compared to the control. Despite these challenges, Jacaranda plants demonstrated resilience with a 100% survival rate. Plant organs showed increased Cd and Pb contents, with fallen leaves having lower metal content, mitigating pollution hazards. Post-planting, soil characteristics shifted, indicating Jacaranda‘s potential for Cd phytoextraction (BCF < 1 and, TF > 1) and Pb phytostabilization (BCF and TF < 1). The study establishes Jacaranda as a promising candidate for phytoremediation due to its resilience to elevated metal levels.
Populus nigra as a phytoremediator for Cd, Cu, and Pb in contaminated soil
The contamination of agricultural soil with heavy metals is a complex phenomenon that causes negative consequences for various organisms. Poplars may have considerable phytoremediation potential, and this plant species can tolerate Cd, Cu, and Pb up to 15.6, 63.6, and 173.3 mg kg-1 soil, respectively, with 100% survival. The analyzed data revealed significant reduction in vegetative growth traits and leaf N, P, K, and carbohydrate (%) and leaf green color degree. However, a simultaneously significant increase in enzymatic activities and electrolyte leakage were recorded in comparison to control plants. A bioconcentration factor of plant organs was ˂ 1, and the translocation factors (TF) of Cd and Cu were ˂ 1 ( ˂100%) under various concentrations of each heavy metal, while TF of Pb was ˃ 1(>100%), except for the first level. More Cd, Cu, and Pb contents were localized in roots compared to leaves or stems. Thus, the risk of contamination through leaf can be minimized. Populus nigra has defense mechanisms against Cd, Cu, and Pb up to 7.8, 29.8, and 91.1 mg/kg soil, respectively because the tolerance index (TI) of either biomass or root was >0.8. Finally, it is a good candidate for research of phytoremediation and phytoextraction.
Application of ZnO NPs, SiOsub.2 NPs and Date Pollen Extract as Partial Substitutes to Nitrogen, Phosphorus, and Potassium Fertilizers for Sweet Basil Production
The reduction in mineral fertilizer usage is crucial to the production of medicinal and aromatic products for safety and health purposes. Presently, nanotechnology and the utilization of natural extracts have been extensively studied due to their significant contribution. Ocimum basilicum is commonly employed for various medicinal and aromatic applications. Therefore, randomized complete block design field experiments containing 10 treatments were conducted during the 2021 and 2022 seasons to investigate the effect of nanoparticles (NPs) of ZnO (1.5 and 2.0 g/L) and SiO[sub.2] (100 and 150 mg/L) and date palm pollen extract (DPPE) at 10 and 20 g/L either alone or in combination with the ¾ or ½ NPK recommended dose (RD). The NPK RD was served as a control treatment on basil plant production in each season. The effectiveness of ZnO NPs, SiO[sub.2] NPs, and DPPE for the decrease in NPK utilization was evaluated. Meanwhile, the most effective treatment for vegetative traits (except for plant height), essential oil %, and yield was ½ NPK RD + 20 g/L DPPE + 2.0 g/L ZnO NPs. Such a treatment increased the branch number/plant, main stem diameter, relevant chlorophyll content, fresh weight/plant, dry weight/plant, essential oil %, and essential oil yield/plant by 21.00 and 9.94%, 58.70 and 40.00%, 20.69 and 15.83%, 68.83 and 58.28%, 48.70 and 56.16%, 45.71 and 35.53%, and 113.22 and 110.32% over the control in the two seasons, respectively. For total phenol and antioxidant activity, the most effective treatments were the ¾ NPK +1.5 g/L ZnO NPs and ½ NPK +2.0 g/L ZnO NPs, respectively. Simultaneously, essential oil composition (with their compound numbers identified (11–29 for control and ¾ NPK RD + 1.5 g/L ZnO NPs)) and the percentage of total compounds, monoterpene hydrocarbons, sesquiterpene hydrocarbons, and oxygenated hydrocarbons were varied among the used applications. The major observed compounds (>8%) estragole, methyl eugenol, linalool, cineole, and caryophyllene were found in different treatments. Thus, the findings of this study indicate the favorable utilization of ZnO NPs, SiO[sub.2] NPs, and DPPE in reducing the application of NPK, which may present a novel strategy and beneficial approach.
Application of ZnO NPs, SiO 2 NPs and Date Pollen Extract as Partial Substitutes to Nitrogen, Phosphorus, and Potassium Fertilizers for Sweet Basil Production
The reduction in mineral fertilizer usage is crucial to the production of medicinal and aromatic products for safety and health purposes. Presently, nanotechnology and the utilization of natural extracts have been extensively studied due to their significant contribution. is commonly employed for various medicinal and aromatic applications. Therefore, randomized complete block design field experiments containing 10 treatments were conducted during the 2021 and 2022 seasons to investigate the effect of nanoparticles (NPs) of ZnO (1.5 and 2.0 g/L) and SiO (100 and 150 mg/L) and date palm pollen extract (DPPE) at 10 and 20 g/L either alone or in combination with the ¾ or ½ NPK recommended dose (RD). The NPK RD was served as a control treatment on basil plant production in each season. The effectiveness of ZnO NPs, SiO NPs, and DPPE for the decrease in NPK utilization was evaluated. Meanwhile, the most effective treatment for vegetative traits (except for plant height), essential oil %, and yield was ½ NPK RD + 20 g/L DPPE + 2.0 g/L ZnO NPs. Such a treatment increased the branch number/plant, main stem diameter, relevant chlorophyll content, fresh weight/plant, dry weight/plant, essential oil %, and essential oil yield/plant by 21.00 and 9.94%, 58.70 and 40.00%, 20.69 and 15.83%, 68.83 and 58.28%, 48.70 and 56.16%, 45.71 and 35.53%, and 113.22 and 110.32% over the control in the two seasons, respectively. For total phenol and antioxidant activity, the most effective treatments were the ¾ NPK +1.5 g/L ZnO NPs and ½ NPK +2.0 g/L ZnO NPs, respectively. Simultaneously, essential oil composition (with their compound numbers identified (11-29 for control and ¾ NPK RD + 1.5 g/L ZnO NPs)) and the percentage of total compounds, monoterpene hydrocarbons, sesquiterpene hydrocarbons, and oxygenated hydrocarbons were varied among the used applications. The major observed compounds (>8%) estragole, methyl eugenol, linalool, cineole, and caryophyllene were found in different treatments. Thus, the findings of this study indicate the favorable utilization of ZnO NPs, SiO NPs, and DPPE in reducing the application of NPK, which may present a novel strategy and beneficial approach.
Indirect shoot organogenesis and plantlets regeneration from stem of ornamental Dieffenbachia maculata cv. Marianna
The present study reports a simple protocol for indirect shoot organogenesis and plantlets regeneration of Dieffenbachia maculata cv. Marianna using stem segments from in vitro shoot culture. Different concentrations and combinations of indole-3-acetic acid (IAA), 1- naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2, 4-D), 6-benzyladenine (BA), and kinetin (Kin) were used for callus induction and shoot organogenesis. The frequency of callus formation reached 87% and the highest number of shoots per callus was 4.8 for explants cultured on Murashige and Skoog (1962) medium supplemented with 15 mg I'1 BA + 15 mg I'1 NAA. Shoots were further grown and rooted on MS hormone free medium. Regenerated plantlets were successfully acclimatized in greenhouse with 100% survival rate.
Fasciation in Crassula argentea: molecular identification of phytoplasmas and associated antioxidative capacity
The present study reports on phytoplasma induced fasciation in Crassula argintea (Crassulaceae). DNA was extracted from symptomless and fasciated tissues and amplified by nested PCR using universal primers P1/P7 followed by R16F2n/R16R2 produced amplicons of 1.2 Kb. The nucleotide sequence analyses of the amplicons indicated that fasciated plants were infected by phytoplasma. Phylogenetic analysis placed the Crassula fasciation phytoplasmas in 16SrII-D group. Histochemical staining for reactive oxygen species indicated that phytoplasma infected (PI) tissues possess significantly higher levels of hydrogen peroxide (H 2 O 2 ) rather than superoxide (O 2 ·- ) as compared with symptomless tissues. PI tissues were also associated with a significant increase in antioxidant enzyme activities (catalase, peroxidase, polyphenol oxidase, and glutathione reductase) and electrolyte leakage as compared with symptomless tissues.