Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Elashvili, Mikheil"
Sort by:
Post-Little Ice Age Equilibrium-Line Altitude and Temperature Changes in the Greater Caucasus Based on Small Glaciers
Understanding glacier and climate variations since pre-Industrial times is crucial for evaluating the present-day glacier response to climate change. Here, we focus on twelve small glaciers (≤2.0 km2) on both the northern and southern slopes of the Greater Caucasus to assess post-Little Ice Age glacier–climate fluctuations in this region. We reconstructed the Little Ice Age glacier extent using a manual detection method based on moraines. More recent glacier fluctuations were reconstructed using historical topographical maps and satellite imagery. Digital elevation models were used to estimate the topographic characteristics of glaciers. We also used the accumulation area ratio (AAR) method and a regional temperature lapse rate to reconstruct glacier snowlines and corresponding temperatures since the 1820s. The results show that all selected glaciers have experienced area loss, terminus retreat, and equilibrium line altitude (ELA) uplift over the last 200 years. The total area of the glaciers has decreased from 19.1 ± 0.9 km2 in the 1820s to 9.7 ± 0.2 km2 in 2020, representing a −49.2% loss, with an average annual reduction of −0.25%. The most dramatic reduction occurred between the 1960s and 2020, when the glacier area shrank by −35.5% or −0.59% yr−1. The average terminus retreat for all selected glaciers was −1278 m (−6.4 m/yr−1) during the last 200 years, while the average retreat over the past 60 years was −576 m (−9.6 m/yr−1). AAR-based (0.6 ± 0.05) ELA reconstructions from all twelve glaciers suggest that the average ELA in the 1820s was about 180 m lower (3245 ± 50 m a.s.l.) than today (3425 ± 50 m a.s.l.), corresponding to surface air temperatures <1.1 ± 0.3 °C than today (2001–2020). The largest warming occurred between the 1960s and today, when snowlines rose by 105 m and air temperatures increased by <0.6 ± 0.3 °C. This study represents a first attempt at using glacier evidence to estimate climate changes in the Caucasus region since the Little Ice Age, and it can be used as a baseline for future studies.
Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application
The rock-cut city of Vardzia is an example of the extraordinary rupestrian cultural heritage of Georgia. The site, Byzantine in age, was carved in the steep tuff slopes of the Erusheti mountains, and due to its peculiar geological characteristics, it is particularly vulnerable to weathering and degradation, as well as frequent instability phenomena. These problems determine serious constraints on the future conservation of the site, as well as the safety of the visitors. This paper focuses on the implementation of a site-specific methodology, based on the integration of advanced remote sensing techniques, such as InfraRed Thermography (IRT) and Unmanned Aerial Vehicle (UAV)-based Digital Photogrammetry (DP), with traditional field surveys and laboratory analyses, with the aim of mapping the potential criticality of the rupestrian complex on a slope scale. The adopted methodology proved to be a useful tool for the detection of areas of weathering and degradation on the tuff cliffs, such as moisture and seepage sectors related to the ephemeral drainage network of the slope. These insights provided valuable support for the design and implementation of sustainable mitigation works, to be profitably used in the management plan of the site of Vardzia, and can be used for the protection and conservation of rupestrian cultural heritage sites characterized by similar geological contexts.
Applying Close Range Non-Destructive Techniques for the Detection of Conservation Problems in Rock-Carved Cultural Heritage Sites
Rock-carved cultural heritage sites are often developed in slopes formed by weak rocks, which due to their peculiar lithological, geotechnical, and morpho-structural features are characterized by excellent carvability, which at the same time makes them prone to weathering, deterioration, and slope instability issues. In this context the use of advanced close-range nondestructive techniques, such as Infrared Thermography (IRT) and Unmanned Aerial vehicle-based Digital Photogrammetry (UAV-DP) can be profitably used for the rapid detection of conservation issues (e.g., open fractures, unstable ledges-niches, water seepage and moisture) that can lead to slope instability phenomena. These techniques, when combined with traditional methods (e.g., field surveys, laboratory analysis), can provide fundamental data (such as 3D maps of the kinematic mechanisms) to implement a site-specific and interdisciplinary approach for the sustainable protection and conservation of such fragile cultural heritage sites. In this paper some examples of conservation problems in several rupestrian sites characterized by different geological contexts, from the mountainous regions of Georgia to the ancient city of Petra in Jordan, are presented, with the aim of evaluating the potential of the proposed integrated approach. The final aim is to provide conservators, practitioners, and local authorities with a useful, versatile, and low-cost methodology, to be profitably used in the protection and conservation strategies of rock-carved sites.
High-Resolution 3D FEM Stability Analysis of the Sabereebi Cave Monastery, Georgia
This study assesses the static stability of the artificial Sabereebi Cave Monastery southeast of Georgia's capital, Tbilisi. The cliff into which these Georgian-Orthodox caverns, chapels, and churches were carved consists of a five-layered sequence of weak sedimentary rock—all of which bear a considerable failure potential and, consequently, pose the challenge of preservation to geologists, engineers, and archaeologists. In the first part of this study, we present a strategy to process point cloud data from drone photogrammetry as well as from laser scanners acquired in- and outside the caves into high-resolution CAD objects that can be used for numerical modeling ranging from macro- to micro-scale. In the second part, we explore four distinct series of static elasto-plastic finite element stability models featuring different levels of detail, each of which focuses on specific geomechanical scenarios such as classic landsliding due to overburden, deformation of architectural features as a result of stress concentration, material response to weathering, and pillar failure due to vertical load. With this bipartite approach, the study serves as a comprehensive 3D stability assessment of the Sabereebi Cave Monastery on the one hand; on the other hand, the established procedure should serve as a pilot scheme, which could be adapted to different sites in the future combining non-invasive and relatively cost-efficient assessment methods, data processing and hazard estimation.HighlightsOne single high-resolution 3D FEM model allowing for failure zone identification on macro- to micro-scaleStrategy to process point cloud data from drone photogrammetry and laser scanners into composite FEM-suitable CAD objectsStrategy application to a real-life geoarchaeological case studyDemonstration of versatile FEM model usage for different geotechnical questionsFailure potential estimation across an underground compound consisting of seven caves and sub-caves
New insights into complex social organization in the southern Caucasus – Late Bronze Age–Early Iron Age settlement patterns in the Shiraki Plain (southeast Georgia)
Due to its location between Mesopotamia and the Eurasian steppes, the southern Caucasus occupies a distinctive place in Old World archeology. While several local areas in the South Caucasus have shown a complex social organization with fortified structures during the Late Bronze Age and Early Iron Age (LBA–EIA), the Shiraki Plain (southeast Georgia), despite its immense potential, has yet to be examined in a regional context. The presented research aims to conduct an initial multi-stage landscape archeological survey over the Shiraki Plain in order to reveal the LBA–EIA fortified settlements of previously identified Didnauri and Nazarlebi types. The authors use remote sensing, photogrammetry, and terrestrial survey methods to investigate selected areas. The results demonstrate the density and complexity of the massive, fortified structures spread over both the plain and neighboring ridges. Their spatial distribution suggests the idea of a well-organized defensive system adapted to the landscape, which in turn is discussed in a broader regional context.
Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia
In the midlatitudes of the planet, we are facing the imminent disappearance of one of our best high-resolution (pre)historic climate and anthropogenic pollution archives, namely the loss of glacial ice, through accelerated global warming. To capture these records and interpret these vanishing archives, it is imperative that we extract ice-cores from midlatitude regions where glaciers still survive and analyse them within frameworks of inter-disciplinary research. In this paper, we focus on Georgia, part of the Greater Caucasus. Results of ice-core analyses from the region have never, to date, been integrated with its other abundant palaeo-environmental, archaeological and historical sources. We review the results of international projects on palaeo-environmental/geoarchaeological sediment archives, the archaeology of metal economies and preliminary ice-core data in Georgia. Collectively, we show that the different strands need to be integrated to fully explore relationships between climate/landscape change and human societal transformations. We then introduce an inclusive interdisciplinary framework for ongoing research on these themes, with an ultimate future goal of using data from the past to inform societal resilience strategies in the present.
PHOTOGRAMMETRIC TECHNIQUE IN EARTH SCIENCES, APPLICATION FROM VARDZIA ROCK-CUT CITY COMPLEX STUDY
Presented work is a part of \"Vardzia Rock Cut City Complex Survey and Monitoring Project\" Started in 2014, by the Research Center of Cultural Heritage and Environment of Ilia State University in cooperation with Experts from ISPRA, supported by the State Agency of Cultural Heritage. The project involves multidisciplinary studies aiming diagnostics of the complex Cultural Monument and elaboration of effective restoration and preservation approaches, identification of major threats and problems and monitoring of ongoing natural processes. [2] Method of close-range photogrammetry was applied to create a base 3D model for modeling natural processes affecting Vardzia such as rain water flow, but also mapping the geological and geomorphological information gathered both on the almost vertical cliff of Vardzia and on the mount slope capping it from above. Two approached for photogrammetric data collection were applied: Aerial Photo Shooting from quadcopter and Land Based Photo collection. Based on the photogrammetric image of Vardzia Rock-cut Complex, we have drawn digital geological and geomorphological maps of the vardzia cliff Scale 1:1000). Conducted field research and the results of laboratory analysis of gathered samples were incorporated in digital maps. Obtained Digital models were used for modeling Natural Processes, such as rain water run off.
CONCEPT OF COMPLEX ENVIRONMENTAL MONITORING NETWORK - VARDZIA ROCK CUT CITY CASE STUDY
Vardzia represents a unique cultural heritage monument - rock cut city, which unites architectural monument and Natural-Geological complex. Such monuments are particularly vulnerable and their restoration and conservation requires complex approach. This monument, as many similar monuments worldwide, is subjected to slow but permanent process of destruction, expressed in following factors: surface weathering of rock, active tectonics interaction between different rock layers, existence of major cracks and associated complex block structure, surface rainwater runoff and infiltrated ground water, temperature variations, etc. During its lifetime, Vardzia was heavily damaged by Historical Earthquake of 1283 and only partly restored afterwards. Research Center of Cultural Heritage and Environment of Ilia State University in cooperation with ISPRA, with the funding from the State agency of Cultural Heritage, has developed a concept of Vardzia complex monitoring network. Concept includes usage of several measurements: monitoring of local meteorological conditions, micro climate in caves monitoring of micro tremors and ambient seismic noise in Vardzia, monitoring displacement and deformation of Vardzia cliff by means of Ground-based SAR (GBSAR) interferometry, continuous photo fixation of ongoing destruction. Paper will present the solution that is suitable for Vardzia rock cut city monitoring, but this solution can be used for any kind of similar complex.
Coastal lowland and floodplain evolution along the lower reaches of the Supsa River (western Georgia)
In the southernmost part of the Colchian plain (Georgia), the Supsa and Rioni rivers represent important catchments for reconstructing Holocene landscape changes. Using granulometric methods, geochemical analyses and radiocarbon dating, we demonstrate that significant palaeoenvironmental changes have taken place in the surroundings of the Supsa fan since at least 4000 BCE. The initial foothill fan accumulation was prolonged by delta plain progradation. Due to continued fluvial sediment supply, mainly from the Rioni, the lagoon silted up and extended peat bogs formed east of the beach ridge complex. The Supsa fan first prograded northwards (since the third millennium BCE) and later shifted westwards, eventually following an avulsion of the Rioni. While Supsa deposits remain limited to the area of the fan and the modern estuary, the alluvial fines of the Rioni dominate the surrounding areas. The relative sea-level (RSL) index points of the region suggest a gradual RSL rise from ∼-9 m between 4000 and 3500 BCE to −3/−2 m below the modern sea level in the second half of the first millennium BCE, the period during which Greek colonization and Colchian settlements are attested by archaeological remains.