Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Eleonora Biagetti"
Sort by:
Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes
2013
We have studied the nucleotide diversity of common bean, Phaseolus vulgaris, which is characterized by two independent domestications in two geographically distinct areas: Mesoamerica and the Andes. This provides an important model, as domestication can be studied as a replicate experiment.
We used nucleotide data from five gene fragments characterized by large introns to analyse 214 accessions (102 wild and 112 domesticated). The wild accessions represent a cross-section of the entire geographical distribution of P. vulgaris.
A reduction in genetic diversity in both of these gene pools was found, which was three-fold greater in Mesoamerica compared with the Andes. This appears to be a result of a bottleneck that occurred before domestication in the Andes, which strongly impoverished this wild germplasm, leading to the minor effect of the subsequent domestication bottleneck (i.e. sequential bottleneck).
These findings show the importance of considering the evolutionary history of crop species as a major factor that influences their current level and structure of genetic diversity. Furthermore, these data highlight a single domestication event within each gene pool. Although the findings should be interpreted with caution, this evidence indicates the Oaxaca valley in Mesoamerica, and southern Bolivia and northern Argentina in South America, as the origins of common bean domestication.
Journal Article
Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris
by
Bellucci, Elisa
,
Bitocchi, Elena
,
Attene, Giovanna
in
Adaptation, Physiological - genetics
,
Andes region
,
Archaeology
2016
Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia‐northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.
Journal Article
Decreased Nucleotide and Expression Diversity and Modified Coexpression Patterns Characterize Domestication in the Common Bean
by
Bitocchi, Elena
,
Attene, Giovanna
,
Ferrarini, Alberto
in
beans
,
Community structure
,
Datasets
2014
Using RNA sequencing technology and de novo transcriptome assembly, we compared representative sets of wild and domesticated accessions of common bean (Phaseolus vulgaris) from Mesoamerica. RNA was extracted at the first true-leaf stage, and de novo assembly was used to develop a reference transcriptome; the final data set consists of ~190,000 single nucleotide polymorphisms from 27,243 contigs in expressed genomic regions. A drastic reduction in nucleotide diversity (-60%) is evident for the domesticated form, compared with the wild form, and almost 50% of the contigs that are polymorphic were brought to fixation by domestication. In parallel, the effects of domestication decreased the diversity of gene expression (18%). While the coexpression networks for the wild and domesticated accessions demonstrate similar seminal network properties, they show distinct community structures that are enriched for different molecular functions. After simulating the demographic dynamics during domestication, we found that 9% of the genes were actively selected during domestication. We also show that selection induced a further reduction in the diversity of gene expression (26%) and was associated with 5-fold enrichment of differentially expressed genes. While there is substantial evidence of positive selection associated with domestication, in a few cases, this selection has increased the nucleotide diversity in the domesticated pool at target loci associated with abiotic stress responses, flowering time, and morphology.
Journal Article
High Level of Nonsynonymous Changes in Common Bean Suggests That Selection under Domestication Increased Functional Diversity at Target Traits
2017
Crop species have been deeply affected by the domestication process, and there have been many efforts to identify selection signatures at the genome level. This knowledge will help geneticists to better understand the evolution of organisms, and at the same time, help breeders to implement successful breeding strategies. Here, we focused on domestication in the Mesoamerican gene pool of
by sequencing 49 gene fragments from a sample of 45
wild and domesticated accessions, and as controls, two accessions each of the closely related species
and
. An excess of nonsynonymous mutations within the domesticated germplasm was found. Our data suggest that the cost of domestication alone cannot explain fully this finding. Indeed, the significantly higher frequency of polymorphisms in the coding regions observed only in the domesticated plants (compared to noncoding regions), the fact that these mutations were mostly nonsynonymous and appear to be recently derived mutations, and the investigations into the functions of their relative genes (responses to biotic and abiotic stresses), support a scenario that involves new functional mutations selected for adaptation during domestication. Moreover, consistent with this hypothesis, selection analysis and the possibility to compare data obtained for the same genes in different studies of varying sizes, data types, and methodologies allowed us to identify four genes that were strongly selected during domestication. Each selection candidate is involved in plant resistance/tolerance to abiotic stresses, such as heat, drought, and salinity. Overall, our study suggests that domestication acted to increase functional diversity at target loci, which probably controlled traits related to expansion and adaptation to new agro-ecological growing conditions.
Journal Article
Gene Expression Study in Gilthead Seabream (Sparus aurata): Effects of Dietary Supplementation with Olive Oil Polyphenols on Immunity, Metabolic, and Oxidative Stress Pathways
by
Sebastiani, Carla
,
Boriani, Laura
,
Manfrin, Amedeo
in
Actinopterygii
,
Animal Feed - analysis
,
Animals
2024
In an era with an ever-growing population, sustainability and green transition are the main milestones to be considered within the current European Green Deal program, and the recovery of by-products for the integration of feed with bioactive molecules, that are sustainable and with high nutritional value, is an ambitious mission to be explored also in aquaculture. Olive oil extraction produces a range of solid and liquid by-products, in varying proportions depending on the utilized production techniques, all of which are considered as possible pollutants. However, these products are also rich of polyphenols, bioactive molecules with several and well-known beneficial properties (antimicrobic, anti-inflammatory, antioxidant, and immune-modulating). On this basis, this work aimed at evaluating the effects of dietary supplementation with polyphenols derived from olive mill wastewater on growth performance and on gene expression modulation, by means of RT-qPCR assays, in farmed Sparus aurata. Particularly, some target genes of metabolic, immunity, and oxidative stress pathways have been investigated in breeding gilthead seabream. Differential gene expression analysis was carried out, and differences between the control group (n = 9) and the treated one (n = 9) were computed with Student’s t test. The results have highlighted that supplemented feed enhanced fish growth, with a significant feed conversion ratio between the two groups. Furthermore, the polyphenol diet had a beneficial impact on gene expression fold with a level of significance for fatty acid binding protein 2, superoxide dismutase 1, and interleukin-12 genes at hepatic or intestinal district. These significant and promising preliminary findings promote, in the future, other investigations on polyphenolic by-products and on their putative or possible re-utilization in fish feeding.
Journal Article
Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed
2023
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis (PTB), a widespread chronic enteritis of ruminants. The progression of the infection depends on the containment action of innate and cell-mediated immunity (CMI), and it is related to environmental and genetic factors. In particular, PTB susceptibility seems to be associated with specific genes coding for immune regulators involved in the cell-mediated response during the infection. The aim of this preliminary study was to verify, in Italian beef cattle, an association between MAP infectious status and the presence of single nucleotide polymorphisms (SNPs) in candidate genes. To the best of our knowledge, this is the first investigation conducted on a native beef cattle breed, known as Marchigiana, reared in Central Italy. The present research, based on a longitudinal study, aimed to identify and correlate phenotypic and genetic profiles characteristic of the subjects potentially able to contrast or contain PTB. In a MAP-infected herd, ELISA, IFN-γ tests, qPCR, and cultures were performed at a follow-up, occurring within a period ranging from three to six years, to evaluate the individual state of infection. Animals testing positive for at least one test were considered infected. DNA samples of 112 bovines, with known MAP statuses, were analyzed to verify an association with SNPs in the genes encoding gamma-interferon (BoIFNG), interleukin receptor 10 (IL10RA), interleukin receptor 12 (IL12RB2), and toll-like receptors (TLR1, TLR2, TLR4). Regarding statistical analysis, the differences among target genes and pairs of alleles in the analyzed groups of animals, were evaluated at a significance level of p < 0.05. For IL10RA and for IL12RB2 genes, relevant differences in genotypic frequencies among the considered cattle groups were observed. For all candidate genes studied in this investigation, SNP genotypes already associated with PTB resistance were found more frequently in our population, suggesting potential resistance traits in the Marchigiana breed.
Journal Article
Evaluation of Single Nucleotide Polymorphisms Associated with Genetic Resistance to Bovine Paratuberculosis in IMarchigiana/I Beef Cattle, an Italian Native Breed
by
Sebastiani, Carla
,
Gabbianelli, Federica
,
Valentini, Alessio
in
Analysis
,
Biological response modifiers
,
Chromosomes
2023
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis (PTB), chronic enteritis of ruminants spread worldwide. PTB is, by now, considered a conditioned disease, depending on both environmental and genomic factors. PTB susceptibility seems to be related to some genes coding for immune regulators involved in the cell-mediated response during infection: genetic markers, particularly single nucleotide polymorphisms (SNPs), have been investigated in several studies, and different candidate genes have been highlighted as associated with PTB resistance/susceptibility. The aim of this preliminary study was to verify, for the first time in a local beef cattle breed, known as Marchigiana, an association between MAP infection status and SNPs in candidate immune-genes. Specifically, in a MAP-infected herd, IFN-γ tests, ELISA, qPCR, and cultures were performed, for a follow-up range of 3-6 years, on 112 bovines to evaluate the state of MAP infection. Animals with positive results for at least one test were considered infected. DNA samples of bovines with a known MAP status were analyzed to assess the presence and the genotypic frequency of SNPs in genes encoding for gamma-interferon (BoIFNG), interleukin receptor 10 (IL10RA), interleukin receptor 12 (IL12RB2), and toll-like receptors (TLR1, TLR2, TLR4). For the IL10RA and IL12RB2 genes, relevant differences in genotypic frequencies among the considered cattle groups were observed. For all the investigated candidate genes, SNP genotypes that have been associated with PTB resistance in the literature, were found more frequently, suggesting potential genetic resistance traits in the Marchigiana breed. Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis (PTB), a widespread chronic enteritis of ruminants. The progression of the infection depends on the containment action of innate and cell-mediated immunity (CMI), and it is related to environmental and genetic factors. In particular, PTB susceptibility seems to be associated with specific genes coding for immune regulators involved in the cell-mediated response during the infection. The aim of this preliminary study was to verify, in Italian beef cattle, an association between MAP infectious status and the presence of single nucleotide polymorphisms (SNPs) in candidate genes. To the best of our knowledge, this is the first investigation conducted on a native beef cattle breed, known as Marchigiana, reared in Central Italy. The present research, based on a longitudinal study, aimed to identify and correlate phenotypic and genetic profiles characteristic of the subjects potentially able to contrast or contain PTB. In a MAP-infected herd, ELISA, IFN-γ tests, qPCR, and cultures were performed at a follow-up, occurring within a period ranging from three to six years, to evaluate the individual state of infection. Animals testing positive for at least one test were considered infected. DNA samples of 112 bovines, with known MAP statuses, were analyzed to verify an association with SNPs in the genes encoding gamma-interferon (BoIFNG), interleukin receptor 10 (IL10RA), interleukin receptor 12 (IL12RB2), and toll-like receptors (TLR1, TLR2, TLR4). Regarding statistical analysis, the differences among target genes and pairs of alleles in the analyzed groups of animals, were evaluated at a significance level of p < 0.05. For IL10RA and for IL12RB2 genes, relevant differences in genotypic frequencies among the considered cattle groups were observed. For all candidate genes studied in this investigation, SNP genotypes already associated with PTB resistance were found more frequently in our population, suggesting potential resistance traits in the Marchigiana breed.
Journal Article