Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Elhottová, Dana"
Sort by:
Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications
2019
Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as
tet
(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes.
Journal Article
Soil-specific responses in the antibiotic resistome of culturable Acinetobacter spp. and other non-fermentative Gram-negative bacteria following experimental manure application
by
Sardar, Puspendu
,
Pérez-Valera, Eduardo
,
Elhottová, Dana
in
Acinetobacter - genetics
,
Animals
,
Anti-Bacterial Agents - pharmacology
2023
Abstract
Acinetobacter spp. and other non-fermenting Gram-negative bacteria (NFGNB) represent an important group of opportunistic pathogens due to their propensity for multiple, intrinsic, or acquired antimicrobial resistance (AMR). Antimicrobial resistant bacteria and their genes can spread to the environment through livestock manure. This study investigated the effects of fresh manure from dairy cows under antibiotic prophylaxis on the antibiotic resistome and AMR hosts in microcosms using pasture soil. We specifically focused on culturable Acinetobacter spp. and other NFGNB using CHROMagar Acinetobacter. We conducted two 28-days incubation experiments to simulate natural deposition of fresh manure on pasture soil and evaluated the effects on antibiotic resistance genes (ARGs) and bacterial hosts through shotgun metagenomics. We found that manure application altered the abundance and composition of ARGs and their bacterial hosts, and that the effects depended on the soil source. Manure enriched the antibiotic resistome of bacteria only in the soil where native bacteria had a low abundance of ARGs. Our study highlights the role of native soil bacteria in modulating the consequences of manure deposition on soil and confirms the potential of culturable Acinetobacter spp. and other NFGNB to accumulate AMR in pasture soil receiving fresh manure.
Cattle manure applied to soil enriches the antibiotic resistome of Acinetobacter spp. and other non-fermenting Gram-negative bacteria in soil, although the response depends on the soil.
Journal Article
Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering
by
Quince, Christopher
,
Chroňáková, Alica
,
Radl, Viviane
in
Agriculture
,
Animal husbandry
,
Animal wastes
2015
Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.
Journal Article
The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice
by
van Elsas, Jan Dirk
,
Nazir, Rashid
,
Elhottová, Dana
in
Academic libraries
,
Acetic acid
,
Acid production
2013
Background
Six independent Gram-negative, facultatively anaerobic, non-spore-forming, nitrogen-fixing rod-shaped isolates were obtained from the root endosphere of rice grown at the International Rice Research Institute (IRRI) and investigated in a polyphasic taxonomic study.
Results
The strains produced fatty acid patterns typical for members of the family
Enterobacteriaceae
. Comparative sequence analyses of the 16S rRNA as well as
rpoB
genes allocated the strains to two well-defined groups within the genus
Enterobacter,
family
Enterobacteriaceae
. The analyses indicated
Enterobacter radicincitans
,
Enterobacter arachidis
and
Enterobacter oryzae
to be the closest related species. An RpoB (translated) protein comparison supported the placement in the genus
Enterobacter
and the relatedness of our isolates to the aforementioned species. Genomic DNA:DNA hybridization analyses and biochemical analyses provided further evidence that the novel strains belong to two new species within the genus
Enterobacter
. The two species can be differentiated from each other and from existing enteric species by acid production from L-rhamnose and D-melibiose, decarboxylation of ornithine and utilization of D-alanine, D-raffinose L-proline and L-aspartic acid, among other characteristics. Members of both species revealed capacities to colonise rice roots, including plant-growth-promoting capabilities such as an active supply of fixed nitrogen to the plant and solubilisation of inorganic phosphorus, next to traits allowing adaptation to the plant.
Conclusions
Two novel proposed enterobacterial species, denominated
Enterobacter oryziphilus
sp. nov. (type strain REICA_142
T
=LMG 26429
T
=NCCB 100393
T
) and
Enterobacter oryzendophyticus
sp. nov. (type strain REICA_082
T
=LMG 26432
T
=NCCB 100390
T
) were isolated from rice roots. Both species are capable of promoting rice growth by supplying nitrogen and phosphorus.
Journal Article
Microbial diversity determines the invasion of soil by a bacterial pathogen
by
Salles, Joana Falcão
,
van Elsas, Jan Dirk
,
Chiurazzi, Mario
in
Agricultural soils
,
Bacteria
,
bacterial communities
2012
Natural ecosystems show variable resistance to invasion by alien species, and this resistance can relate to the species diversity in the system. In soil, microorganisms are key components that determine life support functions, but the functional redundancy in the microbiota of most soils has long been thought to overwhelm microbial diversity–function relationships. We here show an inverse relationship between soil microbial diversity and survival of the invading species Escherichia coli O157:H7, assessed by using the marked derivative strain T. The invader's fate in soil was determined in the presence of (i) differentially constructed culturable bacterial communities, and (ii) microbial communities established using a dilution-to-extinction approach. Both approaches revealed a negative correlation between the diversity of the soil microbiota and survival of the invader. The relationship could be explained by a decrease in the competitive ability of the invader in species-rich vs. species-poor bacterial communities, reflected in the amount of resources used and the rate of their consumption. Soil microbial diversity is a key factor that controls the extent to which bacterial invaders can establish.
Journal Article
Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia andrei and Eisenia fetida
2013
Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.
Journal Article
Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm
by
Husník, Filip
,
Chroňáková, Alica
,
Heuer, Holger
in
Acinetobacter
,
Acinetobacter - drug effects
,
Acinetobacter - genetics
2016
Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment.
LowGC plasmids appear to be important players in antibiotic resistance transfer.
Graphical Abstract Figure.
LowGC plasmids appear to be important players in antibiotic resistance transfer.
Journal Article
Survival of genetically marked Escherichia coli O157:H7 in soil as affected by soil microbial community shifts
by
Chroňáková, Alica
,
van Elsas, Jan Dirk
,
Grekova, Martyna
in
Bacteria
,
Biodiversity
,
Cluster Analysis
2007
A loamy sand soil sampled from a species-rich permanent grassland at a long-term experimental site (Wildekamp, Bennekom, The Netherlands) was used to construct soil microcosms in which the microbial community compositions had been modified by fumigation at different intensities (depths). As expected, increasing depth of fumigation was shown to result in progressively increasing effects on the microbiological soil parameters, as determined by cultivation-based as well as cultivation-independent (PCR-DGGE, PLFA) methods. Both at 7 and at 60 days after fumigation, shifts in the bacterial, fungal and protozoan communities were noted, indicating that altered community compositions had emerged following a transition phase. At the level of bacteria culturable on plates, an increase of the prevalence of bacterial r-strategists was noted at 7 days followed by a decline at 60 days, which also hinted at the effectiveness of the fumigation treatments. The survival of a non-toxigenic Escherichia coli O157:H7 derivative, strain T, was then assessed over 60 days in these microcosms, using detection via colony forming units counts as well as via PCR-DGGE. Both data sets were consistent with each other. Thus, a clear effect of fumigation depth on the survival of the invading strain T was noted, as a progressive increase of depth coincided with a progressively enhanced inoculant survival rate. As fumigation depth was presumably inversely related to community complexity, this was consistent with the hypothesis that soil systems with reduced biological complexity offer enhanced opportunities for invading microbial species to establish and persist. The significance of this finding is discussed in the light of the ongoing discussion about the complexity–invasiveness relationship within microbial communities, in particular regarding the opportunities of pathogens to persist.
Journal Article
Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils
2007
In the present study, we tested the hypothesis that animal treading associated with a high input of organic matter would favour methanogenesis in soils used as overwintering pasture. Hence, methane emissions and methanogen populations were examined at sections with different degree of cattle impact in a Farm in South Bohemia, Czech Republic. In spring, methane emission positively corresponded to the gradient of animal impact. Applying phospholipid etherlipid analysis, the highest archaeal biomass was found in section severe impact (SI), followed by moderate impact (MI) and no impact. The same trend was observed for the methanogens as showed by real-time quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes. The detection of monounsaturated isoprenoid side chain hydrocarbons (i20:1) indicated the presence of acetoclastic methanogens in the cattle-impacted sites. This result was corroborated by the phylogenetic analysis of mcrA gene sequences obtained from section SI, which showed that 33% of the analysed clones belonged to the genus Methanosarcina. The majority of the sequenced clones (41%) showed close affiliations with uncultured rumen archaeons. This leads to the assumption that a substantial part of the methanogenic community in plot SI derived from the grazing cattle itself. Compared to the spring sampling, in autumn, a significant reduction in archaeal biomass and number of copies of mcrA genes was observed mainly for section MI. It can be concluded that after 5 months without cattle impact, the severely impact section maintained its methane production potential, whereas the methane production potential under moderate impact returned to background values.
Journal Article