Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
39 result(s) for "Elizabeth Trachtenberg"
Sort by:
Killer cell immunoglobulin-like receptor (KIR) gene content variation in the HGDP-CEPH populations
In the present study, we investigate patterns of variation in the KIR cluster in a large and well-characterized sample of worldwide human populations in the Human Genome Diversity Project—Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) panel in order to better understand the patterns of diversity in the region. Comparison of KIR data with that from other genomic regions allows control for strictly demographic factors; over 500,000 additional genomic markers have been typed in this panel by other investigators and the data made publicly available. Presence/absence frequencies and haplotypic associations for the KIR region are analyzed in the 52 populations comprising the panel and in accordance with major world regions (Africa, Middle East, Central Asia, East Asia, Europe, Americas, and Oceania). These data represent the first overview of KIR population genetics in the well-documented HGDP-CEPH panel and suggest different evolutionary histories and recent selection in the KIR gene cluster.
High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis
We investigated association between HLA class I and class II alleles and haplotypes, and KIR loci and their HLA class I ligands, with multiple sclerosis (MS) in 412 European American MS patients and 419 ethnically matched controls, using next-generation sequencing. The DRB1*15:01~DQB1*06:02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95% confidence interval (CI) = 3–5.31; p-value (p) = 2.22E−16), as was DRB1*03:01~DQB1*02:01 (OR = 1.63; CI = 1.19–2.24; p = 1.41E−03). Hardy–Weinberg (HW) analysis in MS patients revealed a significant DRB1*03:01~DQB1*02:01 homozyote excess (15 observed; 8.6 expected; p = 0.016). The OR for this genotype (5.27; CI = 1.47–28.52; p = 0.0036) suggests a recessive MS risk model. Controls displayed no HW deviations. The C*03:04~B*40:01 haplotype (OR = 0.27; CI = 0.14–0.51; p = 6.76E−06) was highly protective for MS, especially in haplotypes with A*02:01 (OR = 0.15; CI = 0.04–0.45; p = 6.51E−05). By itself, A*02:01 is moderately protective, (OR = 0.69; CI = 0.54–0.87; p = 1.46E−03), and haplotypes of A*02:01 with the HLA-B Thr80 Bw4 variant (Bw4T) more so (OR = 0.53; CI = 0.35–0.78; p = 7.55E−04). Protective associations with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15:01, but the Bw4T variant was protective (OR = 0.64; CI = 0.49–0.82; p = 3.37–04) independent of LD with DRB1*15:01. The Bw4I variant was not associated with MS. Overall, we find specific class I HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred by DRB1*15:01.
Correction: High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis
Since the publication of this article, the authors have found that the numbers of patients and controls were reversed. This study included 412 MS patients and 419 controls. This correction applies to the Abstract, the final paragraph of the Introduction, and the first paragraph of the Materials and Methods. This was entirely a reporting error and does not impact the Results or Conclusions.
Advantage of rare HLA supertype in HIV disease progression
The highly polymorphic human leukocyte antigen (HLA) class I molecules help to determine the specificity and repertoire of the immune response. The great diversity of these antigen-binding molecules confers differential advantages in responding to pathogens, but presents a major obstacle to distinguishing HLA allele–specific effects. HLA class I supertypes provide a functional classification for the many different HLA alleles that overlap in their peptide-binding specificities. We analyzed the association of these discrete HLA supertypes with HIV disease progression rates in a population of HIV-infected men. We found that HLA supertypes alone and in combination conferred a strong differential advantage in responding to HIV infection, independent of the contribution of single HLA alleles that associate with progression of the disease. The correlation of the frequency of the HLA supertypes with viral load suggests that HIV adapts to the most frequent alleles in the population, providing a selective advantage for those individuals who express rare alleles.
A combined DPA1∼DPB1 amino acid epitope is the primary unit of selection on the HLA-DP heterodimer
Here, we present results for DPA1 and DPB1 four-digit allele-level typing in a large ( n  = 5,944) sample of unrelated European American stem cell donors previously characterized for other class I and class II loci. Examination of genetic data for both chains of the DP heterodimer in the largest cohort to date, at the amino acid epitope, allele, genotype, and haplotype level, allows new insights into the functional units of selection and association for the DP heterodimer. The data in this study suggest that for the DPA1-DPB1 heterodimer, the unit of selection is the combined amino acid epitope contributed by both the DPA1 and DPB1 genes, rather than the allele, and that patterns of LD are driven primarily by dimer stability and conformation of the P1 pocket. This may help explain the differential pattern of allele frequency distribution observed for this locus relative to the other class II loci. These findings further support the notion that allele-level associations in disease and transplantation may not be the most important unit of analysis, and that they should be considered instead in the molecular context.
Susceptibility to Crohn's disease is mediated by KIR2DL2/KIR2DL3 heterozygosity and the HLA-C ligand
In the present study, we investigated the relationship between the KIR loci and the genes encoding their HLA ligands and genetic susceptibility to Crohn's disease (CD). Analyses of the interactions between KIR3DL1, KIR2DL1, KIR2DL2, and KIR2DL3 with their respective HLA ligands indicate that there is a protective effect for KIR2DL2 in the absence of its HLA ligand C1. Given that KIR2DL2 and KIR2DL3 segregate as alleles, we compared their genotypic distributions to expectations under Hardy-Weinberg Equilibrium (HWE) with regard to the HLA ligand C1 status. While all the genotypic distributions conform to expectations under HWE in controls, in C2 ligand homozygous cases there is significant deviation from HWE, with a reduction of KIR2DL2, KIR2DL3 heterozygotes. KIR2DL2, KIR2DL3 heterozygosity is the only genotypic combination that confers protection from CD. In addition to the protective effect (OR = 0.44, CI = 0.22-0.87; p = 0.018) observed in C2 ligand homozygotes, the KIR2DL2, KIR2DL3 genotype is predisposing (OR = 1.34, CI = 1.03-4.53; p = 0.031) in the presence of C1 ligand. A test for trend of HLA class I C ligand group genotypes with KIR2DL2, KIR2DL3 heterozygosity in cases and controls indicates that C1, C2 ligand group heterozygotes have an intermediate effect on predisposition. These results show for the first time that disease susceptibility may be related to heterozygosity at a specific KIR locus, and that HLA ligand genotype influences the relative effect of the KIR genotype.
SNP Association Mapping across the Extended Major Histocompatibility Complex and Risk of B-Cell Precursor Acute Lymphoblastic Leukemia in Children
The extended major histocompatibility complex (xMHC) is the most gene-dense region of the genome and harbors a disproportionately large number of genes involved in immune function. The postulated role of infection in the causation of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) suggests that the xMHC may make an important contribution to the risk of this disease. We conducted association mapping across an approximately 4 megabase region of the xMHC using a validated panel of single nucleotide polymorphisms (SNPs) in childhood BCP-ALL cases (n=567) enrolled in the Northern California Childhood Leukemia Study (NCCLS) compared with population controls (n=892). Logistic regression analyses of 1,145 SNPs, adjusted for age, sex, and Hispanic ethnicity indicated potential associations between several SNPs and childhood BCP-ALL. After accounting for multiple comparisons, one of these included a statistically significant increased risk associated with rs9296068 (OR=1.40, 95% CI=1.19-1.66, corrected p=0.036), located in proximity to HLA-DOA. Sliding window haplotype analysis identified an additional locus located in the extended class I region in proximity to TRIM27 tagged by a haplotype comprising rs1237485, rs3118361, and rs2032502 (corrected global p=0.046). Our findings suggest that susceptibility to childhood BCP-ALL is influenced by genetic variation within the xMHC and indicate at least two important regions for future evaluation.
High-throughput killer cell immunoglobulin-like receptor genotyping by MALDI-TOF mass spectrometry with discovery of novel alleles
The killer cell immunoglobulin-like receptors (KIR) interact with major histocompatibility complex (MHC) class I ligands to regulate the functions of natural killer cells and T cells. Like human leukocyte antigens class I, human KIR are highly variable and correlated with infection, autoimmunity, pregnancy syndromes, and transplantation outcome. Limiting the scope of KIR analysis is the low resolution, sensitivity, and speed of the established methods of KIR typing. In this study, we describe a first-generation single nucleotide polymorphism (SNP)-based method for typing the 17 human KIR genes and pseudogenes that uses analysis by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It is a high-throughput method that requires minute amounts of genomic DNA for discrimination of KIR genes with some allelic resolution. A study of 233 individuals shows that the results obtained by the SNP-based KIR/MALDI-TOF method are consistent with those obtained with the established sequence-specific oligonucleotide probe or sequence-specific polymerase chain reaction methods. The added sensitivity of the KIR/MALDI-TOF method allowed putative novel alleles of the KIR2DL1, KIR3DL1, KIR2DS5, and KIR2DL5 genes to be identified. Sequencing the KIR2DL5 variant proved it was a newly discovered allele, one that appears associated with Hispanic and Native American populations. This KIR/MALDI-TOF method of KIR typing should facilitate population and disease-association studies that improve knowledge of the immunological functions of KIR-MHC class I interactions.
Spectrum of HLA associations: the case of medically refractory pediatric acute lymphoblastic leukemia
Although studies of HLA and disease now date back some 50 years, a principled understanding of that relationship has been slow to emerge. Here, we examine the associations of three HLA loci with medically refractory pediatric acute lymphoblastic leukemia (pALL) patients in a case–control study involving 2,438 cases and 41,750 controls. An analysis of alleles from the class I loci, HLA-A and HLA-B, and the class II locus DRB1 illuminates a spectrum of extremely significant allelic associations conferring both predisposition and protection. Genotypes constructed from predisposing, protective, and neutral allelic categories point to an additive mode of disease causation. For all three loci, genotypes homozygous for predisposing alleles are at highest disease risk while the favorable effect of homozygous protective genotypes is less striking. Analysis of A–B and B–DRB1 haplotypes reveals locus-specific differences in disease effects, while that all three loci influence pALL; the influence of HLA-B is greater than that of HLA-A, and the predisposing effect of DRB1 exceeds that of HLA-B. We propose that the continuum in disease susceptibility suggests a system in which many alleles take part in disease predisposition based on differences in binding affinity to one or a few peptides of exogenous origin. This work provides evidence that an immune response mediated by alleles from several HLA loci plays a critical role in the pathogenesis of pALL, adding to the numerous studies pointing to a role for an infectious origin in pALL.