Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,407 result(s) for "Elliott, David J."
Sort by:
SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions
Despite the many approaches to study differential splicing from RNA-seq, many challenges remain unsolved, including computing capacity and sequencing depth requirements. Here we present SUPPA2, a new method that addresses these challenges, and enables streamlined analysis across multiple conditions taking into account biological variability. Using experimental and simulated data, we show that SUPPA2 achieves higher accuracy compared to other methods, especially at low sequencing depth and short read length. We use SUPPA2 to identify novel Transformer2-regulated exons, novel microexons induced during differentiation of bipolar neurons, and novel intron retention events during erythroblast differentiation.
FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer
Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-β, EGF, α3β1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.
The role of glycans in the development and progression of prostate cancer
Key Points Glycosylation is a key cellular mechanism regulating many important biological processes in cancer; alterations in glycosylation patterns are common features of cancer cells The prostate is a secretory gland with an important role in male fertility, and as such, is an abundant secretor of glycoproteins of all types A variety of alterations in glycoproteins have been observed in prostate cancer cells including: increased sialylation and fucosylation; increased O -β- N -acetylglucosylation; the emergence of cryptic and high-mannose N -glycans and proteoglycan alterations Glycosylation-specific antibodies and glycosylation gene signatures have proven to be powerful tools in classifying prostate cancer tumour aggressiveness Glycans have potential clinical applications in patients with prostate cancer as both predictive and prognostic biomarkers and therapeutic targets The prostate glycoproteome can undergo a wide range of different alterations during the occurrence and progression of prostate cancer, which might explain some of the interpatient heterogeneity in disease severity and outcomes. In this Review, the authors describe the potential for alterations in the glycoproteome to provide biomarkers and/or clinical targets for the prognosis and/or treatment of prostate cancer. Prostate cancer is a unique and heterogeneous disease. Currently, a major unmet clinical need exists to develop biomarkers that enable indolent disease to be distinguished from aggressive disease. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Despite progress over the past decade in profiling the genome and proteome, the prostate cancer glycoproteome remains relatively understudied. A wide range of alterations in the glycoproteins on prostate cancer cells can occur, including increased sialylation and fucosylation, increased O -β- N -acetylglucosamine (GlcNAc) conjugation, the emergence of cryptic and high-mannose N -glycans and alterations to proteoglycans. Glycosylation can alter protein function and has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism; altered glycosylation in prostate cancer might modify some, or all of these processes. In the past three years, powerful tools such as glycosylation-specific antibodies and glycosylation gene signatures have been developed, which enable detailed analyses of changes in glycosylation. Thus, emerging data on these often overlooked modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.
RNA splicing and splicing regulator changes in prostate cancer pathology
Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2 . A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2 – ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.
PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects
The carboxy-terminus of the spliceosomal protein PRPF8 , which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5’-splice site (5’SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5’SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches. PRPF8 is a hotspot for mutations causing retinitis pigmentosa-type 13. Here the authors generated PRPF8 patient-specific retinal cells, demonstrating an important role for this splicing factor in spliceosome kinetics and 5’ splice site selection.
Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating
Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate’s body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.
Analysis of human ES cell differentiation establishes that the dominant isoforms of the lncRNAs RMST and FIRRE are circular
Background Circular RNAs (circRNAs) are predominantly derived from protein coding genes, and some can act as microRNA sponges or transcriptional regulators. Changes in circRNA levels have been identified during human development which may be functionally important, but lineage-specific analyses are currently lacking. To address this, we performed RNAseq analysis of human embryonic stem (ES) cells differentiated for 90 days towards 3D laminated retina. Results A transcriptome-wide increase in circRNA expression, size, and exon count was observed, with circRNA levels reaching a plateau by day 45. Parallel statistical analyses, controlling for sample and locus specific effects, identified 239 circRNAs with expression changes distinct from the transcriptome-wide pattern, but these all also increased in abundance over time. Surprisingly, circRNAs derived from long non-coding RNAs (lncRNAs) were found to account for a significantly larger proportion of transcripts from their loci of origin than circRNAs from coding genes. The most abundant, circ RMST :E12-E6, showed a > 100X increase during differentiation accompanied by an isoform switch, and accounts for > 99% of RMST transcripts in many adult tissues. The second most abundant, circ FIRRE :E10-E5, accounts for > 98% of FIRRE transcripts in differentiating human ES cells, and is one of 39 FIRRE circRNAs, many of which include multiple unannotated exons. Conclusions Our results suggest that during human ES cell differentiation, changes in circRNA levels are primarily globally controlled. They also suggest that RMST and FIRRE , genes with established roles in neurogenesis and topological organisation of chromosomal domains respectively, are processed as circular lncRNAs with only minor linear species.
The role of GCNT1 mediated O-glycosylation in aggressive prostate cancer
Prostate cancer is the most common cancer in men and a major cause of cancer related deaths worldwide. Nearly all affected men develop resistance to current therapies and there is an urgent need to develop new treatments for advanced disease. Aberrant glycosylation is a common feature of cancer cells implicated in all of the hallmarks of cancer. A major driver of aberrant glycosylation in cancer is the altered expression of glycosylation enzymes. Here, we show that GCNT1, an enzyme that plays an essential role in the formation of core 2 branched O -glycans and is crucial to the final definition of O -glycan structure, is upregulated in aggressive prostate cancer. Using in vitro and in vivo models, we show GCNT1 promotes the growth of prostate tumours and can modify the glycome of prostate cancer cells, including upregulation of core 2 O -glycans and modifying the O -glycosylation of secreted glycoproteins. Furthermore, using RNA sequencing, we find upregulation of GCNT1 in prostate cancer cells can alter oncogenic gene expression pathways important in tumour growth and metastasis. Our study highlights the important role of aberrant O -glycosylation in prostate cancer progression and provides novel insights regarding the mechanisms involved.
Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer
Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression. Cancers often begin as cells that grow in connected sheets or clumps known as epithelial cells. To spread, the cancer cells need to change into cells that can break away from the group and move through the tissues. In prostate cancer, this process can happen years after successful treatment, but researchers are not sure why. Prostate cancer grows in response to testosterone. This hormone circulates around the body, and when it goes into a cell it helps select which genes are switched on or off. Testosterone-blocking drugs can help slow prostate cancer growth by changing this switching on and off of genes. But, over time, some cancers become resistant to the effects of these drugs and start to spread. This may be down to complexities in how testosterone controls gene activity. To produce a protein, a human cell first makes a copy of the corresponding gene. This copy is then modified, cutting and pasting different parts of the sequence (a process called ‘splicing’) before the protein is produced. The patterns of splicing a cell exhibits depend on splicing regulator proteins. Testosterone can change splicing patterns in prostate cancer cells, but researchers did not know how. To find out, Munkley et al. examined a set of genes that turn off in response to testosterone-blocking drugs in people with prostate cancer. This revealed that testosterone controls a master splicing regulator called ESRP2, which is normally present in epithelial cells. In prostate cancer cells in mice, extra ESRP2 slowed tumour growth. But, although ESRP2 levels are high in human prostate cancer cells to begin with, they drop in response to testosterone-blocking drugs. In the laboratory grown cells, the result was a switch away from 'epithelial-like' gene splicing patterns. Some of the new splicing patterns correlated with better patient prognosis, but other splicing patterns might help cancer cells to spread around the body. These results raise the possibility that blocking testosterone may impair prostate cancer growth, but also inadvertently prepare cancer cells to break away from tumours. A more complete understanding of how testosterone controls splicing could help explain why some tumours initially shrink when testosterone is blocked, but then later spread. Identifying the genes controlled by ESRP2 may reveal new drug targets to improve prostate cancer treatment.
The Tissue-Specific RNA Binding Protein T-STAR Controls Regional Splicing Patterns of Neurexin Pre-mRNAs in the Brain
The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of the Neurexin1-3 AS4 exons in the mouse brain.