Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
601 result(s) for "Ellis, James D."
Sort by:
Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States
For honey bees (Apis mellifera), colony maintenance and growth are highly dependent on worker foragers obtaining sufficient resources from flowering plants year round. Despite the importance of floral diversity for proper bee nutrition, urban development has drastically altered resource availability and diversity for these important pollinators. Therefore, understanding the floral resources foraged by bees in urbanized areas is key to identifying and promoting plants that enhance colony health in those environments. In this study, we identified the pollen foraged by bees in four developed areas of the U.S., and explored whether there were spatial or temporal differences in the types of floral sources of pollen used by honey bees in these landscapes. To do this, pollen was collected every month for up to one year from colonies located in developed (urban and suburban) sites in California, Texas, Florida, and Michigan, except during months of pollen dearth or winter. Homogenized pollen samples were acetolyzed and identified microscopically to the lowest taxonomic level possible. Once identified, each pollen type was classified into a frequency category based on its overall relative abundance. Species richness and diversity indices were also calculated and compared across states and seasons. We identified up to 64 pollen types belonging to 39 plant families in one season (California). Species richness was highest in CA and lowest in TX, and was highest during spring in every state. In particular, \"predominant\" and \"secondary\" pollen types belonged to the families Arecaceae, Sapindaceae, Anacardiaceae, Apiaceae, Asteraceae, Brassicaceae, Fabaceae, Fagaceae, Lythraceae, Myrtaceae, Rhamnaceae, Rosaceae, Rutaceae, Saliaceae, and Ulmaceae. This study will help broaden our understanding of honey bee foraging ecology and nutrition in urban environments, and will help promote the use of plants that serve the dual purpose of providing aesthetic value and nutritious forage for honey bee colonies placed in developed landscapes.
Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.
Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)
Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.
Evaluating the Efficacy of Common Treatments Used for Vairimorpha (Nosema) spp. Control
Vairimorpha (formerly Nosema) apis and V. ceranae are microsporidian pathogens that are of concern for managed honey bee colonies. Multiple treatments have been proposed to be effective in reducing the prevalence and intensity of Vairimorpha spp. infections. Here, we test the efficacy of these products in one lab-based experiment and three field experiments. In the lab experiment, we found no reductions in Vairimorpha spp. prevalence (proportion of individuals infected with Vairimorpha spp.) or intensity (number of Vairimorpha spp. spores per individual), but we did find a decrease in honey bee survival after treatment with Fumagilin-B, Honey-B-Healthy®, and Nozevit Plus. The first field experiment showed increased Vairimorpha spp. intensity in colonies treated with Fumagilin-B and HiveAlive® compared to a negative control (sucrose syrup alone). The second field experiment showed a weak reduction in Vairimorpha spp. intensity after 3 weeks post treatment with Fumagilin-B compared to Nozevit. However, Vairimorpha spp. intensity returned to levels comparable to those of other treatment groups after 5 weeks post treatment and remained similar to those of other groups for the duration of the experiment. The final field trial showed no positive or negative effects of treatment with Fumagilin-B or Nosevit on Vairimorpha spp. prevalence or intensity. These findings raise questions regarding the efficacy of the products currently being used by beekeepers to control Vairimorpha spp. We argue that the observed reduction of Vairimorpha spp. is more likely relevant to the phenology of spore prevalence and intensity in honey bee colonies than to chemical treatment.
Honey Bee Exposure to Pesticides: A Four-Year Nationwide Study
Pollinators, including honey bees, are responsible for the successful reproduction of more than 87% of flowering plant species: they are thus vital to ecosystem health and agricultural services world-wide. To investigate honey bee exposure to pesticides, 168 pollen samples and 142 wax comb samples were collected from colonies within six stationary apiaries in six U.S. states. These samples were analyzed for evidence of pesticides. Samples were taken bi-weekly when each colony was active. Each apiary included thirty colonies, of which five randomly chosen colonies in each apiary were sampled for pollen. The pollen samples were separately pooled by apiary. There were a total of 714 detections in the collected pollen and 1008 detections in collected wax. A total of 91 different compounds were detected: of these, 79 different pesticides and metabolites were observed in the pollen and 56 were observed in the wax. In all years, insecticides were detected more frequently than were fungicides or herbicides: one third of the detected pesticides were found only in pollen. The mean (standard deviation (SD)) number of detections per pooled pollen sample varied by location from 1.1 (1.1) to 8.7 (2.1). Ten different modes of action were found across all four years and nine additional modes of action occurred in only one year. If synergy in toxicological response is a function of simultaneous occurrence of multiple distinct modes of action, then a high frequency of potential synergies was found in pollen and wax-comb samples. Because only pooled pollen samples were obtained from each apiary, and these from only five colonies per apiary per year, more data are needed to adequately evaluate the differences in pesticide exposure risk to honey bees among colonies in the same apiary and by year and location.
The small hive beetle’s capacity to disperse over long distances by flight
The spread of invasive species often follows a jump-dispersal pattern. While jumps are typically fostered by humans, local dispersal can occur due to the specific traits of a species, which are often poorly understood. This holds true for small hive beetles ( Aethina tumida ), which are parasites of social bee colonies native to sub-Saharan Africa. They have become a widespread invasive species. In 2017, a mark-release-recapture experiment was conducted in six replicates (A–F) using laboratory reared, dye-fed adults (N = 15,690). Honey bee colonies were used to attract flying small hive beetles at fixed spatial intervals from a central release point. Small hive beetles were recaptured (N = 770) at a maximum distance of 3.2 km after 24 h and 12 km after 1 week. Most small hive beetles were collected closest to the release point at 0 m (76%, replicate A) and 50 m (52%, replicates B to F). Temperature and wind deviation had significant effects on dispersal, with more small hive beetles being recaptured when temperatures were high (GLMM: slope = 0.99, SE = 0.17, Z = 5.72, P  < 0.001) and confirming the role of wind for odour modulated dispersal of flying insects (GLMM: slope = − 0.39, SE = 0.14, Z = − 2.90, P  = 0.004). Our findings show that the small hive beetles is capable of long-distance flights, and highlights the need to understand species specific traits to be considered for monitoring and mitigation efforts regarding invasive alien species.
Population genomics and morphometric assignment of western honey bees (Apis mellifera L.) in the Republic of South Africa
Backgrounds Apis mellifera scutellata and A.m. capensis (the Cape honey bee) are western honey bee subspecies indigenous to the Republic of South Africa (RSA). Both bees are important for biological and economic reasons. First, A.m. scutellata is the invasive “African honey bee” of the Americas and exhibits a number of traits that beekeepers consider undesirable. They swarm excessively, are prone to absconding (vacating the nest entirely), usurp other honey bee colonies, and exhibit heightened defensiveness. Second, Cape honey bees are socially parasitic bees; the workers can reproduce thelytokously. Both bees are indistinguishable visually. Therefore, we employed Genotyping-by-Sequencing (GBS), wing geometry and standard morphometric approaches to assess the genetic diversity and population structure of these bees to search for diagnostic markers that can be employed to distinguish between the two subspecies. Results Apis mellifera scutellata possessed the highest mean number of polymorphic SNPs (among 2449 informative SNPs) with minor allele frequencies > 0.05 (Np = 88%). The RSA honey bees generated a high level of expected heterozygosity ( H exp  = 0.24). The mean genetic differentiation ( F ST ; 6.5%) among the RSA honey bees revealed that approximately 93% of the genetic variation was accounted for within individuals of these subspecies. Two genetically distinct clusters ( K  = 2) corresponding to both subspecies were detected by Model-based Bayesian clustering and supported by Principal Coordinates Analysis (PCoA) inferences. Selected highly divergent loci ( n  = 83) further reinforced a distinctive clustering of two subspecies across geographical origins, accounting for approximately 83% of the total variation in the PCoA plot. The significant correlation of allele frequencies at divergent loci with environmental variables suggested that these populations are adapted to local conditions. Only 17 of 48 wing geometry and standard morphometric parameters were useful for clustering A.m. capensis , A.m. scutellata , and hybrid individuals. Conclusions We produced a minimal set of 83 SNP loci and 17 wing geometry and standard morphometric parameters useful for identifying the two RSA honey bee subspecies by genotype and phenotype. We found that genes involved in neurology/behavior and development/growth are the most prominent heritable traits evolved in the functional evolution of honey bee populations in RSA. These findings provide a starting point for understanding the functional basis of morphological differentiations and ecological adaptations of the two honey bee subspecies in RSA.
Attack of the dark clones the genetics of reproductive and color traits of South African honey bees (Apis mellifera spp.)
The traits of two subspecies of western honey bees, Apis mellifera scutellata and A . m . capensis , endemic to the Republic of South Africa (RSA), are of biological and commercial relevance. Nevertheless, the genetic basis of important phenotypes found in these subspecies remains poorly understood. We performed a genome wide association study on three traits of biological relevance in 234 A . m . capensis , 73 A . m . scutellata and 158 hybrid individuals. Thirteen markers were significantly associated to at least one trait ( P ≤ 4.28 × 10 −6 ): one for ovariole number, four for scutellar plate and eight for tergite color. We discovered two possible causative variants associated to the respective phenotypes: a deletion in GB46429 or Ebony (NC_007070.3:g.14101325G>del) (R69Efs*85) and a nonsense on GB54634 (NC_007076.3:g.4492792A>G;p.Tyr128*) causing a premature stop, substantially shortening the predicted protein. The mutant genotypes are significantly associated to phenotypes in A . m . capensis . Loss-of-function of Ebony can cause accumulation of circulating dopamine, and increased dopamine levels correlate to ovary development in queenless workers and pheromone production. Allelic association ( P = 1.824 x 10 −5 ) of NC_007076.3:g.4492792A>G;p.Tyr128* to ovariole number warrants further investigation into function and expression of the GB54634 gene. Our results highlight genetic components of relevant production/conservation behavioral phenotypes in honey bees.
Mitochondrial genome diversity and population structure of two western honey bee subspecies in the Republic of South Africa
Apis mellifera capensis Eschscholtz and A . m . scutellata Lepeletier are subspecies of western honey bees that are indigenous to the Republic of South Africa (RSA). Both subspecies have invasive potential and are organisms of concern for areas outside their native range, though they are important bees to beekeepers, agriculture, and the environment where they are native. The aim of the present study was to examine genetic differentiation among these subspecies and estimate their phylogenetic relationships using complete mitochondrial genomes sequences. We used 25 individuals that were either assigned to one of the subspecies or designated hybrids using morphometric analyses. Phylogenetic analyses of mitogenome sequences by maximum likelihood (ML) and Bayesian inference identified a monophyletic RSA clade, subdivided into two clades. A haplotype network was consistent with the phylogenetic trees. However, members of both subspecies occurred in both clades, indicating that A . m . capensis and A . m . scutellata are neither reciprocally monophyletic nor do they exhibit paraphyly with one subspecies nested within the other subspecies. Furthermore, no mitogenomic features were diagnostic to either subspecies. All bees analyzed from the RSA expressed a substantial level of haplotype diversity (most samples had unique haplotypes) but limited nucleotide diversity. The number of variable codons across protein-coding genes (PCGs) differed among loci, with CO3 exhibiting the most variation and ATP6 the least.
Detection of Lotmaria passim, Crithidia mellificae and Replicative Forms of Deformed Wing Virus and Kashmir Bee Virus in the Small Hive Beetle (Aethina tumida)
Knowledge regarding the honey bee pathogens borne by invasive bee pests remains scarce. This investigation aimed to assess the presence in Aethina tumida (small hive beetle, SHB) adults of honey bee pathogens belonging to the following groups: (i) bacteria (Paenibacillus larvae and Melissococcus plutonius), (ii) trypanosomatids (Lotmaria passim and Crithidia mellificae), and (iii) viruses (black queen cell virus, Kashmir bee virus, deformed wing virus, slow paralysis virus, sacbrood virus, Israeli acute paralysis virus, acute bee paralysis virus, chronic bee paralysis virus). Specimens were collected from free-flying colonies in Gainesville (Florida, USA) in summer 2017. The results of the molecular analysis show the presence of L. passim, C. mellificae, and replicative forms of deformed wing virus (DWV) and Kashmir bee virus (KBV). Replicative forms of KBV have not previously been reported. These results support the hypothesis of pathogen spillover between managed honey bees and the SHB, and these dynamics require further investigation.