Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Ellmerich, Stephan"
Sort by:
Plasmin activity promotes amyloid deposition in a transgenic model of human transthyretin amyloidosis
Cardiac ATTR amyloidosis, a serious but much under-diagnosed form of cardiomyopathy, is caused by deposition of amyloid fibrils derived from the plasma protein transthyretin (TTR), but its pathogenesis is poorly understood and informative in vivo models have proved elusive. Here we report the generation of a mouse model of cardiac ATTR amyloidosis with transgenic expression of human TTR S52P . The model is characterised by substantial ATTR amyloid deposits in the heart and tongue. The amyloid fibrils contain both full-length human TTR protomers and the residue 49-127 cleavage fragment which are present in ATTR amyloidosis patients. Urokinase-type plasminogen activator (uPA) and plasmin are abundant within the cardiac and lingual amyloid deposits, which contain marked serine protease activity; knockout of α 2 -antiplasmin, the physiological inhibitor of plasmin, enhances amyloid formation. Together, these findings indicate that cardiac ATTR amyloid deposition involves local uPA-mediated generation of plasmin and cleavage of TTR, consistent with the previously described mechano-enzymatic hypothesis for cardiac ATTR amyloid formation. This experimental model of ATTR cardiomyopathy has potential to allow further investigations of the factors that influence human ATTR amyloid deposition and the development of new treatments. ATTR amyloidosis causes heart failure through the accumulation of misfolded transthyretin in cardiac muscle. Here the authors report a mouse model of ATTR amyloidosis and demonstrate the involvement of protease activity in ATTR amyloid deposition.
Pathogenetic mechanisms of amyloid A amyloidosis
Systemic amyloid A (AA) amyloidosis is a serious complication of chronic inflammation. Serum AA protein (SAA), an acute phase plasma protein, is deposited extracellularly as insoluble amyloid fibrils that damage tissue structure and function. Clinical AA amyloidosis is typically preceded by many years of active inflammation before presenting, most commonly with renal involvement. Using dose-dependent, doxycycline-inducible transgenic expression of SAA in mice, we show that AA amyloid deposition can occur independently of inflammation and that the time before amyloid deposition is determined by the circulating SAA concentration. High level SAA expression induced amyloidosis in all mice after a short, slightly variable delay. SAA was rapidly incorporated into amyloid, acutely reducing circulating SAA concentrations by up to 90%. Prolonged modest SAA overexpression occasionally produced amyloidosis after long delays and primed most mice for explosive amyloidosis when SAA production subsequently increased. Endogenous priming and bulk amyloid deposition are thus separable events, each sensitive to plasma SAA concentration. Amyloid deposits slowly regressed with restoration of normal SAA production after doxycycline withdrawal. Reinduction of SAA overproduction revealed that, following amyloid regression, all mice were primed, especially for rapid glomerular amyloid deposition leading to renal failure, closely resembling the rapid onset of renal failure in clinical AA amyloidosis following acute exacerbation of inflammation. Clinical AA amyloidosis rarely involves the heart, but amyloidotic SAA transgenic mice consistently had minor cardiac amyloid deposits, enabling us to extend to the heart the demonstrable efficacy of our unique antibody therapy for elimination of visceral amyloid.
Genetic evidence for serum amyloid P component as a drug target in neurodegenerative disorders
The mechanisms responsible for neuronal death causing cognitive loss in Alzheimer's disease (AD) and many other dementias are not known. Serum amyloid P component (SAP) is a constitutive plasma protein, which is cytotoxic for cerebral neurones and also promotes formation and persistence of cerebral A β amyloid and neurofibrillary tangles. Circulating SAP, which is produced exclusively by the liver, is normally almost completely excluded from the brain. Conditions increasing brain exposure to SAP increase dementia risk, consistent with a causative role in neurodegeneration. Furthermore, neocortex content of SAP is strongly and independently associated with dementia at death. Here, seeking genomic evidence for a causal link of SAP with neurodegeneration, we meta-analysed three genome-wide association studies of 44 288 participants, then conducted cis -Mendelian randomization assessment of associations with neurodegenerative diseases. Higher genetically instrumented plasma SAP concentrations were associated with AD (odds ratio 1.07, 95% confidence interval (CI) 1.02; 1.11, p = 1.8 × 10 −3 ), Lewy body dementia (odds ratio 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10 −5 ) and plasma tau concentration (0.06 log 2 (ng l −1 ) 95%CI 0.03; 0.08, p = 4.55 × 10 −6 ). These genetic findings are consistent with neuropathogenicity of SAP. Depletion of SAP from the blood and the brain, by the safe, well tolerated, experimental drug miridesap may thus be neuroprotective.
A specific nanobody prevents amyloidogenesis of D76N β2-microglobulin in vitro and modifies its tissue distribution in vivo
Systemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive therapeutic strategy. Studies on the amyloidogenic variant of β 2 -microglobulin, D76N, causing hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in physiologically relevant conditions. Here we compare the potency of two previously described inhibitors of wild type β 2 -microglobulin fibrillogenesis, doxycycline and single domain antibodies (nanobodies). The β 2 -microglobulin -binding nanobody, Nb24, more potently inhibits D76N β 2 -microglobulin fibrillogenesis than doxycycline with complete abrogation of fibril formation. In β 2 -microglobulin knock out mice, the D76N β 2 -microglobulin/ Nb24 pre-formed complex, is cleared from the circulation at the same rate as the uncomplexed protein; however, the analysis of tissue distribution reveals that the interaction with the antibody reduces the concentration of the variant protein in the heart but does not modify the tissue distribution of wild type β 2 -microglobulin. These findings strongly support the potential therapeutic use of this antibody in the treatment of systemic amyloidosis.
Requirement for complement in antibody responses is not explained by the classic pathway activator IgM
Animals lacking complement factors C1q, C2, C3, or C4 have severely impaired Ab responses, suggesting a major role for the classic pathway. The classic pathway is primarily initiated by antigen–Ab complexes. Therefore, its role for primary Ab responses seems paradoxical because only low amounts of specific Abs are present in naive animals. A possible explanation could be that the classic pathway is initiated by IgM from naive mice, binding with sufficient avidity to the antigen. To test this hypothesis, a knock-in mouse strain, Cμ13, with a point mutation in the gene encoding the third constant domain of the μ-heavy chain was constructed. These mice produce IgM in which proline in position 436 is substituted with serine, a mutation previously shown to abrogate the ability of mouse IgM to activate complement. Unexpectedly, the Ab response to sheep erythrocytes and keyhole limpet hemocyanin in Cμ13 mice was similar to that in WT mice. Thus, although secreted IgM and the classic pathway activation are both required for the normal primary Ab response, this does not require that IgM activate C. This led us to test Ab responses in animals lacking one of three other endogenous activators of the classic pathway: specific intracellular adhesion molecule-grabbing nonintegrin R1, serum amyloid P component, and C-reactive protein. Ab responses were also normal in these animals.
Antibody-Associated Reversal of ATTR Amyloidosis–Related Cardiomyopathy
Antibody-Associated Cardiac Amyloid RegressionThe investigators describe antibodies that bound amyloid in three patients with transthyretin amyloidosis. Spontaneous regression of cardiomyopathy occurred in all three patients.
Modified Amino Acid Copolymers Suppress Myelin Basic Protein 85-99-Induced Encephalomyelitis in Humanized Mice through Different Effects on T Cells
A humanized mouse bearing the HLA-DR2 (DRA/DRB1*1501) protein associated with multiple sclerosis (MS) and the myelin basic protein (MBP) 85-99-specific HLA-DR2-restricted T cell receptor from an MS patient has been used to examine the effectiveness of modified amino acid copolymers poly(F,Y,A,K)n and poly-(V,W,A,K)n in therapy of MBP 85-99-induced experimental autoimmune encephalomyelitis (EAE) in comparison to Copolymer 1 [Copaxone, poly(Y,E,A,K)n]. The copolymers were designed to optimize binding to HLA-DR2. Vaccination, prevention, and treatment of MBP-induced EAE in the humanized mice with copolymers FYAK and VWAK ameliorated EAE more effectively than Copolymer 1, reduced the number of pathological lesions, and prevented the up-regulation of human HLA-DR on CNS microglia. Moreover, VWAK inhibited MBP 85-99-specific T cell proliferation more efficiently than either FYAK or Copolymer 1 and induced anergy of HLA-DR2-restricted transgenic T cells as its principle mechanism. In contrast, FYAK induced proliferation and a pronounced production of the antiinflammatory T helper 2 cytokines IL-4 and IL-10 from nontransgenic T cells as its principle mechanism of immunosuppression. Thus, copolymers generated by using different amino acids inhibited disease using different mechanisms to regulate T cell responses.
Antibodies to human serum amyloid P component eliminate visceral amyloid deposits
Dual attack on amyloidosis Systemic amyloidosis is a serious disease caused by accumulation of amyloid fibrils in the viscera and connective tissues. Serum amyloid P (SAP) is a normal plasma protein that concentrates within the amyloid deposits. Working in a mouse model of the disease, Mark Pepys and colleagues find that a combination of a drug that depletes circulating SAP and an antibody that targets residual SAP within the deposits results in clearance of amyloid deposits. A humanized version of the anti-SAP antibody has been developed with a view to clinical evaluation of this dual approach. Systemic amyloidosis is a serious disease caused by accumulation of amyloid fibrils in the viscera and connective tissues. Serum amyloid P component (SAP) is a normal plasma protein that concentrates within the amyloid deposits. These authors find that a combination of a drug that depletes circulating SAP and an antibody that targets residual SAP within the deposits results in clearance of amyloid deposits in a mouse model of the disease. Accumulation of amyloid fibrils in the viscera and connective tissues causes systemic amyloidosis, which is responsible for about one in a thousand deaths in developed countries 1 . Localized amyloid can also have serious consequences; for example, cerebral amyloid angiopathy is an important cause of haemorrhagic stroke. The clinical presentations of amyloidosis are extremely diverse and the diagnosis is rarely made before significant organ damage is present 1 . There is therefore a major unmet need for therapy that safely promotes the clearance of established amyloid deposits. Over 20 different amyloid fibril proteins are responsible for different forms of clinically significant amyloidosis and treatments that substantially reduce the abundance of the respective amyloid fibril precursor proteins can arrest amyloid accumulation 1 . Unfortunately, control of fibril-protein production is not possible in some forms of amyloidosis and in others it is often slow and hazardous 1 . There is no therapy that directly targets amyloid deposits for enhanced clearance. However, all amyloid deposits contain the normal, non-fibrillar plasma glycoprotein, serum amyloid P component (SAP) 2 , 3 . Here we show that administration of anti-human-SAP antibodies to mice with amyloid deposits containing human SAP triggers a potent, complement-dependent, macrophage-derived giant cell reaction that swiftly removes massive visceral amyloid deposits without adverse effects. Anti-SAP-antibody treatment is clinically feasible because circulating human SAP can be depleted in patients by the bis- d -proline compound CPHPC 4 , thereby enabling injected anti-SAP antibodies to reach residual SAP in the amyloid deposits. The unprecedented capacity of this novel combined therapy to eliminate amyloid deposits should be applicable to all forms of systemic and local amyloidosis.
Equilibrium contrast CMR for the detection of amyloidosis in mice
From: 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France 3-6 February 2011 Author details1-Centre for Advanced Biomedical Imaging, University College London, London, UKEMPTY2-Robert Steiner MRI Unit, Imperial College London, London, UKEMPTY3-Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UKEMPTY4-Department of Medical Physics and Biomedical Engineering, University College London, London, UKEMPTY5-Heart Hospital and Division of Medicine, University College London, London, UKEMPTY Supplemental Information: Meeting abstracts - A single PDF containing all abstracts in this supplement is available at http://www.biomedcentral.com/content/files/pdf/1532-429X-13-S1-full.pdf.EMPTY Objective In this study, we optimise equilibrium contrast CMR (EQ-CMR) protocols in mice and apply EQ-CMR to detect AA amyloidosis in the heart and liver of mice with inducible transgenic overexpression of serum amyloid A protein.
Exon Skipping of Hepatic APOB Pre-mRNA With Splice-switching Oligonucleotides Reduces LDL Cholesterol In Vivo
Familial hypercholesterolemia (FH) is a genetic disorder characterized by extremely high levels of plasma low-density lipoprotein (LDL), due to defective LDL receptor-apolipoprotein B (APOB) binding. Current therapies such as statins or LDL apheresis for homozygous FH are insufficiently efficacious at lowering LDL cholesterol or are expensive. Treatments that target APOB100, the structural protein of LDL particles, are potential therapies for FH. We have developed a series of APOB-directed splice-switching oligonucleotides (SSOs) that cause the expression of APOB87, a truncated isoform of APOB100. APOB87, like similarly truncated isoforms expressed in patients with a different condition, familial hypobetalipoproteinemia, lowers LDL cholesterol by inhibiting very low–density lipoprotein (VLDL) assembly and increasing LDL clearance. We demonstrate that these “APO-skip ” SSOs induce high levels of exon skipping and expression of the APOB87 isoform, but do not substantially inhibit APOB48 expression in cell lines. A single injection of an optimized APO-skip SSO into mice transgenic for human APOB resulted in abundant exon skipping that persists for >6 days. Weekly treatments generated a sustained reduction in LDL cholesterol levels of 34–51% in these mice, superior to pravastatin in a head-to-head comparison. These results validate APO-skip SSOs as a candidate therapy for FH.