Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Ellsworth, Lisa M."
Sort by:
Ten‐year ecological responses to fuel treatments within semiarid Wyoming big sagebrush ecosystems
Sagebrush ecosystems of western North America are threatened by invasive annual grasses and wildfires that can remove fire‐intolerant shrubs for decades. Fuel reduction treatments are used ostensibly to aid in fire suppression, conserve wildlife habitat, and restore historical fire regimes, but long‐term ecological impacts of these treatments are not clear. In 2006, we initiated fuel reduction treatments (prescribed fire, mowing, and herbicide applications [tebuthiuron and imazapic]) in six Artemisia tridentata ssp. wyomingensis communities. We evaluated long‐term effects of these fuel treatments on: (1) magnitude and longevity of fuel reduction; (2) Greater Sage‐grouse habitat characteristics; and (3) ecological resilience and resistance to invasive annual grasses. Responses were analyzed using repeated‐measures linear mixed models. Response variables included plant biomass, cover, density and height, distances between perennial plants, and exposed soil cover. Prescribed fire produced the greatest reduction in woody fuel over time. Mowing initially reduced woody biomass, which recovered by year 10. Tebuthiuron did not significantly reduce woody biomass compared to controls. All woody fuel treatments reduced sagebrush cover to below 15% (recommended minimum for Greater Sage‐grouse habitat), but only prescribed fire reduced cover to below controls. Median mowed sagebrush height remained above the recommended 30 cm. Cheatgrass (Bromus tectorum) cover increased to above the recommended maximum of 10% across all treatments and controls. Ecological resilience to woody fuel treatments was lowest with fire and greatest with mowing. Low resilience over the 10 posttreatment years was identified by: (1) poor perennial plant recovery posttreatment with sustained reductions in cover and density of some perennial plant species; (2) sustained reductions in lichen and moss cover; and (3) increases in cheatgrass cover. Although 10 years is insufficient to conclusively describe final ecological responses to fuel treatments, mowing woody fuels has the greatest potential to reduce woody fuel, minimize shrub mortality and soil disturbance, maintain lichens and mosses, and minimize long‐term negative impacts on Greater Sage‐grouse habitat. However, maintaining ecological resilience and resistance to invasion may be threatened by increases in cheatgrass cover, which are occurring regionally.
Repeated fire altered succession and increased fire behavior in basin big sagebrush–native perennial grasslands
The structure and composition of sagebrush‐dominated ecosystems have been altered by changes in fire regimes, land use, invasive species, and climate change. This often decreases resilience to disturbance and degrades critical habitat for species of conservation concern. Basin big sagebrush (Artemisia tridentata ssp. tridentata) ecosystems, in particular, are greatly reduced in distribution as land has been converted to agriculture and other land uses. The fire regime, relative proportions of shrub and grassland patches, and the effects of repeated burns in this ecosystem are poorly understood. We quantified postfire patterns of vegetation accumulation and modeled potential fire behavior on sites that were burned and first measured in the late 1980s at John Day Fossil Beds National Monument, Oregon, USA. The area partially reburned 11 yr after the initial fire, allowing a comparison of one vs. two fires. Repeated burns shifted composition from shrub‐dominated to prolonged native herbaceous dominance. Fifteen years following one fire, the native‐dominated herbaceous component was 44% and live shrubs were 39% of total aboveground biomass. Aboveground biomass of twice‐burned sites (2xB; burned 26 and 15 yr prior) was 71% herbaceous and 12% shrub. Twenty‐six years after fire, total aboveground biomass was 113–209% of preburn levels, suggesting a fire‐return interval of 15–25 yr. Frequency and density of Pseudoroegneria spicata and Festuca idahoensis were not modified by fire history, but Poa secunda was reduced by repeated fire, occurring in 84% of plots burned 26 yr prior, 72% of plots burned 15 yr prior, and 49% in 2xB plots. Nonnative annual Bromus tectorum occurred at a frequency of 74%, but at low density with no differences due to fire history. Altered vegetation structure modified fire behavior, with modeled rates of fire spread in 2xB sites double that of once‐burned sites. This suggests that these systems likely were historically composed of a mosaic of shrub and grassland. However, contemporary increases in fire frequency will likely create positive feedbacks of more intense fire behavior and prolonged periods of early‐successional vegetation in basin big sagebrush communities.
Fire frequency, intensity, and burn severity in Kalimantan’s threatened Peatland areas over two Decades
Kalimantan, the Indonesian portion of the Island of Borneo, has an estimated 45,000 km 2 of tropical peatland and represents one of the largest stocks of tropical peat carbon. However, over the last three decades, the peatlands of Indonesia, and Kalimantan in particular, have been heavily degraded or destroyed by drainage of peatland swamps, deforestation, land cover change for agriculture, and intentional burning. Many studies have examined degradation of peat forests and the associated frequency of fires, often focusing on specific regions of Kalimantan over limited periods. Here, we present our results of a spatially comprehensive, long-term analysis of peatland fires in Kalimantan over more than two decades from early 2001 to the end of 2021. We examined the effects of changing climate conditions, land cover change, and the regulatory framework on the total burned area and frequency and severity of peatland fires over a 21-year period by combining extensive datasets of medium-resolution and high-resolution satellite imagery. Moreover, surface fire intensity was modeled for four dominant land use/land cover types to determine how land use change alters fire behavior. Our results confirm a consistent and strong spatiotemporal correlation between hydro-climatological drivers associated with El Niño conditions on peatland fire frequencies and burned peatland area. Changes in the number of fires and burn severity are visible over time and are caused by a combination of large-scale meteorological patterns and changing regulations. A significant relative increase of the “high” and “very high” severity across all peatland fires in Kalimantan was found for the latest period from 2015 through 2021 by 12.1 and 13.4%, compared to the two previous 7-year periods from 2001 to 2007 period and from 2008 to 2014, respectively, whereas the total peatland area burned decreased in 2015 to 2021 by 28.7% on average compared to the previous periods. The results underline the importance of a comprehensive approach considering physical aspects of overarching climate conditions while improving political and regulatory frameworks to mitigate the negative effects of burning tropical peatlands.
Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance
The concepts of resilience and resistance (R&R) have been used to improve wildland fuel treatment outcomes by identifying parts of the landscape that are more likely to respond well to treatment. This study examined how the economic benefits and costs of fuel treatments in sagebrush (Artemisia spp.) ecosystems varied with the resilience and resistance properties of the treatment site. Generalized ecological models were developed for the economic analysis of fuel treatments that integrated ecological succession, annual grass invasion, pinyon–juniper expansion, and wildfire to simulate ecosystem dynamics over time. The models incorporated resilience and resistance by varying model parameters related to each plant community’s ability to resist annual grass invasion and recover post-disturbance. Simulations produced estimates of the expected (ex ante) benefit–cost ratio for each treatment. The approach also considered the benefits associated with the system remaining in an ecologically favorable condition, allowing us to report a more holistic measure of the net economic benefits of fuel treatments. The results from the simulations indicated fuel treatment was economically efficient in late-successional sagebrush and early-successional juniper in mountain big sagebrush associations. For sagebrush associations where treatment was economically efficient, higher R&R status sites had higher benefit–cost ratios. The results suggested that treatment costs were more determinative of economic efficiency than treatment benefits.
Cheatgrass alters flammability of native perennial grasses in laboratory combustion experiments
Background The invasive annual grass cheatgrass ( Bromus tectorum ) increases fuel continuity, alters patterns of fire spread, and changes plant communities in sagebrush shrublands of the Great Basin (USA) and adjacent sagebrush steppe, but no studies have contrasted its flammability to native perennial grasses. Understanding cheatgrass flammability is crucial for predicting fire behavior, informing management decisions, and assessing fire risk in invaded areas. This study aimed to determine the flammability of cheatgrass compared to two native perennial grasses (Columbia needlegrass [ Achnatherum nelsonii ] and bluebunch wheatgrass [ Pseudoroegneria spicata ]) across a range of fuel moistures. Results All three grass species had decreased flammability with increasing fuel moisture. Columbia needlegrass averaged 11% lower mass consumption than cheatgrass, and bluebunch wheatgrass had longer flaming duration and higher maximum temperatures than cheatgrass and Columbia needlegrass. The addition of cheatgrass to each perennial grass increased combined mass consumption, flaming duration, and flame heights. For these three attributes, the impact differed by the amount of cheatgrass in the mixture. Maximum and mean temperatures during perennial grass combustion were similar with and without cheatgrass addition. Some attributes of Columbia needlegrass flammability when burned with cheatgrass were higher than expected based on the flammability of each species, suggesting that Columbia needlegrass may be susceptible to pre-heating from combustion of cheatgrass. Conversely, the flammability of bluebunch wheatgrass and cheatgrass together had both positive and negative interactive effects, suggesting the impact on joint flammability from cheatgrass differs by perennial grass species. Conclusions This study provides experimental evidence supporting previous qualitative observations of cheatgrass flammability. Cheatgrass increased perennial grass sustainability and consumption, suggesting that cheatgrass poses a significant fire threat to native grasses regardless of moisture content. The study provides species-specific insights into flammability, which could be used to inform efforts to prevent or mitigate cheatgrass-induced wildfires.
Long-Term Effects of Fire on Vegetation Structure and Predicted Fire Behavior in Wyoming Big Sagebrush Ecosystems
Fire historically occurred across the sagebrush steppe, but little is known about how patterns of post-fire fuel accumulation influence future fire in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities. To quantify change in fuel composition and structure in intact sagebrush ecosystems, we sampled 17 years following prescribed fire in eight approximately 400 ha plots (4 burned, 4 unburned control) at Hart Mountain National Antelope Refuge, OR, USA. Fuels data were used to model potential fire behavior in burn and control plots across four environmental scenarios that mimic drying of fuels through the fire season. Seventeen years after fire total fuel loads were 7 × higher in controls (6015 kg ha⁻¹) than burned plots (831 kg ha⁻¹; P < 0.01). Herbaceous fuels were 5 times greater in burns (P < 0. 01). Shrub fuel was nearly 10 times higher in unburned plots (P < 0.01), and litter under shrubs in controls was 3.75 times greater than in burns (P < 0.01). Potential fire behavior was lower in burned plots than in unburned controls across all environmental scenarios. In the driest scenario, potential rate of spread ranged from 0.4 to 1.5 m min⁻¹ in burns and 2.7 to 5.5 m min⁻¹ in controls (P < 0.01). Maintaining resilience in these ecosystems at multiple spatial and temporal scales may include a consideration of the natural role of fire in good condition Wyoming big sagebrush ecosystems. This study shows that under these conditions, fire can promote good condition mid-successional ecosystems and can act as a fuel break, slowing the spread and decreasing the intensity of a future wildfire.
Review of fuel treatment effects on fuels, fire behavior and ecological resilience in sagebrush (Artemisia spp.) ecosystems in the Western U.S
Background Sagebrush ecosystems are experiencing increases in wildfire extent and severity. Most research on vegetation treatments that reduce fuels and fire risk has been short term (2–3 years) and focused on ecological responses. We review causes of altered fire regimes and summarize literature on the longer-term effects of treatments that modify (1) shrub fuels, (2) pinyon and juniper canopy fuels, and (3) fine herbaceous fuels. We describe treatment effects on fuels, fire behavior, ecological resilience, and resistance to invasive annual grasses. Results Our review revealed tradeoffs in woody fuel treatments between reducing canopy fuels vs. increasing understory herbaceous vegetation (fuels) and fire behavior. In pinyon-juniper expansion areas, all treatments decreased crown fire risk. Prescribed fire and cut and broadcast burn treatments reduced woody fuels long-term but had higher risk of invasion. Mechanical treatments left understory vegetation intact and increased native perennial plants. However, cut and leave treatments increased downed woody fuel and high-intensity wildfire risk, while cut and pile burn and mastication caused localized disturbances and annual grass invasion. Ecological outcomes depended on ecological resilience; sites with warm and dry conditions or depleted perennial native herbaceous species experienced lower recovery and resistance to invasive annual grasses. In invasive annual grass dominated areas, high-intensity targeted grazing reduced fine fuels but required retreatment or seeding; in intact ecosystems with relatively low shrub cover, dormant season targeted grazing reduced fine fuel and thus fire spread. Preemergent herbicides reduced annual grasses with differing effects in warm and dry vs. cool and moist environments. Conclusions The information largely exists to make informed decisions on treatments to mitigate effects of wildfire and improve ecological resilience at local, project scales. Primary considerations are the short- vs long-term tradeoffs in fuels and fire behavior and thus fire severity and the likely ecological response.
Fuel treatments in shrublands experiencing pinyon and juniper expansion result in trade-offs between desired vegetation and increased fire behavior
Background Native pinyon ( Pinus spp.) and juniper ( Juniperus spp.) trees are expanding into shrubland communities across the Western United States. These trees often outcompete with native sagebrush ( Artemisia spp.) associated species, resulting in increased canopy fuels and reduced surface fuels. Woodland expansion often results in longer fire return intervals with potential for high severity crown fire. Fuel treatments are commonly used to prevent continued tree infilling and growth and reduce fire risk, increase ecological resilience, improve forage quality and quantity, and/or improve wildlife habitat. Treatments may present a trade-off; they restore shrub and herbaceous cover and decrease risk of canopy fire but may increase surface fuel load and surface fire potential. We measured the accumulation of surface and canopy fuels over 10 years from ten sites across the Intermountain West in the Sagebrush Steppe Treatment Evaluation Project woodland network ( www.SageSTEP.org ), which received prescribed fire or mechanical (cut and drop) tree reduction treatments. We used the field data and the Fuel Characteristic Classification System (FCCS) in the Fuel and Fire Tools (FFT) application to estimate surface and canopy fire behavior in treated and control plots in tree expansion phases I, II, and III. Results Increased herbaceous surface fuel following prescribed fire treatments increased the modeled rate of surface fire spread (ROS) 21-fold and nearly tripled flame length (FL) by year ten post-treatment across all expansion phases. In mechanical treatments, modeled ROS increased 15-fold, FL increased 3.8-fold, and reaction intensity roughly doubled in year ten post-treatment compared to pretreatment and untreated controls. Treatment effects were most pronounced at 97th percentile windspeeds, with modeled ROS up to 82 m min −1 in mechanical and 106 m min −1 in prescribed fire treatments by 10 years post-treatment compared to 5 m min −1 in untreated controls. Crown fire transmissivity risk was eliminated by both fuel treatments. Conclusions While prescribed fire and mechanical treatments in shrublands experiencing tree expansion restored understory vegetation and prevented continued juniper and pinyon infilling and growth, these fuel treatments also increased modeled surface fire behavior. Thus, management tradeoffs occur between desired future vegetation and wildfire risk after fuel treatments.
Fuel treatment response groups for fire-prone sagebrush landscapes
Background Sagebrush shrublands in the Great Basin, USA, are experiencing widespread increases in wildfire size and area burned resulting in new policies and funding to implement fuel treatments. However, we lack the spatial data needed to optimize the types and locations of fuel treatments across large landscapes and mitigate fire risk. To address this, we developed treatment response groups (TRGs)—sagebrush and pinyon-juniper vegetation associations that differ in resilience to fire and resistance to annual grass invasion (R&R) and thus responses to fuel treatments. Results We developed spatial layers of the dominant sagebrush associations by overlaying LANDFIRE Existing Vegetation Type, Biophysical Setting, and Mapping Zone, extracting vegetation plot data from the LANDFIRE 2016 LF Reference Database for each combination, and identifying associated sagebrush, grass, shrub, and tree species. We derived spatial layers of pinyon-juniper (PJ) cover and expansion phase within the sagebrush associations from the Rangeland Analysis Platform and identified persistent PJ woodlands from the LANDFIRE Biophysical Setting. TRGs were created by overlaying dominant sagebrush associations, with and without PJ expansion, and new indicators of resilience and resistance. We assigned appropriate woody fuel treatments to the TRGs based on prior research on treatment responses. The potential area to receive woody fuel treatments was constrained to 52,940 km 2 (18.4%) of the dominant sagebrush associations (272,501 km 2 ) largely because of extensive areas of low R&R (68.9%), which respond poorly and were not assigned treatments. Prescribed fire was assigned to big sagebrush associations with moderate or higher resilience and moderately low or higher resistance (14.2%) due to higher productivity, fuels, and recovery potential. Mechanical treatments were assigned to big sagebrush associations with moderately low resilience and to low, black, and mixed low sagebrush associations with moderately low or higher R&R (4.2%) due to lower productivity, fuels, and recovery potential. Persistent PJ woodlands represent high value resources and were not assigned treatments (9%). Conclusions Mapped TRGs can help identify the dominant sagebrush associations and determine appropriate fuel treatments at intermediate scales and provide the basis for quantitative wildfire risk assessments and outcome-based scenario planning to prioritize fuel treatment investments at large landscape scales.
Invasive grasses change landscape structure and fire behaviour in Hawaii
QUESTIONS: How does potential fire behaviour differ in grass‐invaded non‐native forests vs open grasslands? How has land cover changed from 1950–2011 along two grassland/forest ecotones in Hawaii with repeated fires? LOCATION: Non‐native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA. METHODS: We quantified fuel load and moisture in non‐native forest and grassland (Megathyrsus maximus) plots (n = 6) at Makua Military Reservation and Schofield Barracks, and used these field data to model potential fire behaviour using the BehavePlus fire modelling program. Actual rate and extent of land‐cover change were quantified for both areas from 1950–2011 with historical aerial imagery. RESULTS: Live and dead fuel moisture content and fine fuel loads did not differ between forests and grasslands. However, mean surface fuel height was 31% lower in forests (72 cm) than grasslands (105 cm; P < 0.02), which drove large differences in predicted fire behaviour. Rates of fire spread were 3–5 times higher in grasslands (5.0–36.3 m·min⁻¹) than forests (0–10.5 m·min⁻¹; P < 0.001), and flame lengths were 2–3 times higher in grasslands (2.8–10.0 m) than forests (0–4.3 m; P < 0.01). Between 1950 and 2011, invasive grassland cover increased at both Makua (320 ha) and Schofield (745 ha) at rates of 2.62 and 1.83 ha·yr⁻¹, respectively, with more rapid rates of conversion before active fire management practices were implemented in the early 1990s. CONCLUSIONS: These results support accepted paradigms for the tropics, and demonstrate that type conversion associated with non‐native grass invasion and subsequent fire has occurred on landscape scales in Hawaii. Once forests are converted to grassland there is a significant increase in fire intensity, which likely provides the positive feedback to continued grassland dominance in the absence of active fire management.