Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "Elshikh, Mohamed Soliman"
Sort by:
Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes
The dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet ( Pennisetum typhoidum L.), sorghum ( Sorghum bicolor L.) and mungbean ( Vigna radiata L.) and pigeonpea ( Cajanus cajan L.) and four winter crops, wheat ( Triticum aestivum L.), barley ( Hordeum vulgare L.), fababean ( Vicia faba ) and rapeseed ( Brassica napus ) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes.
Evaluation of Various Solvent Extracts of Tetrastigma leucostaphylum (Dennst.) Alston Leaves, a Bangladeshi Traditional Medicine Used for the Treatment of Diarrhea
Tetrastigma leucostaphylum (TL) is an important ethnic medicine of Bangladesh used to treat diarrhea and dysentery. Hence, current study has been designed to characterize the antidiarrheal (in vivo) and cytotoxic (in vitro) effects of T. leucostaphylum. A crude extract was prepared with methanol (MTL) and further partitioned into n-hexane (NTL), dichloromethane (DTL), and n-butanol (BTL) fractions. Antidiarrheal activity was investigated using castor oil induced diarrhea, enteropooling, and gastrointestinal transit models, while cytotoxicity was evaluated using the brine shrimp lethality bioassay. In antidiarrheal experiments, all doses (100, 200, and 400 mg/kg) of the DTL extract significantly reduced diarrheal stool frequency, volume and weight of intestinal contents, and gastrointestinal motility in mice. Similarly, in the cytotoxicity assay, all extracts exhibited activity, with the DTL extract the most potent (LC50 67.23 μg/mL). GC-MS analysis of the DTL extract identified 10 compounds, which showed good binding affinity toward M3 muscarinic acetylcholine, 5-HT3, Gut inhibitory phosphodiesterase, DNA polymerase III subunit alpha, and UDP-N-acetylglucosamine-1 carboxyvinyltransferase enzyme targets upon molecular docking analysis. Although ADME/T analyses predicted the drug-likeness and likely safety upon consumption of these bioactive compounds, significant toxicity concerns are evident due to the presence of the known phytotoxin, 2,4-di-tert-butylphenol. In summary, T. leucostaphylum showed promising activity, helping to rationalize the ethnomedicinal use and importance of this plant, its safety profile following both acute and chronic exposure warrants further investigation.
Field Performance of Allelopathic Bacteria for Biological Weed Control in Wheat: Innovative, Sustainable and Eco-Friendly Approach for Enhanced Crop Production
Application of allelopathic bacteria (AB) for weed suppression may be helpful to solve various environmental challenges posed by conventional weed control techniques. In our earlier studies, around 400 strains of rhizobacteria of five weeds and wheat were isolated, screened for production of phytotoxic substances, and tested for phytotoxic activity on wild oat and little seed canary grass, and possible effects on wheat under laboratory conditions. We obtained 13 strains inhibitory to wild oat (Avena fatua L.) and 11 to little seed canary grass (Phalaris minor Retz.). Five of these (13 and 11) strains also suppressed wheat (Triticum aestivum L.) while others either stimulated or remained ineffective on wheat in separate bioassays. The success of any weed biocontrol technique, however, depends on its response under field conditions. Therefore, the present study was conducted to investigate biological weed control of the five most efficient strains of AB under natural conditions in pot and field trials. Wheat was artificially invaded with wild oat in the pot trial through seeding. Wheat of the field trial was artificially invaded with wild oat and little seed canary through seeding. The selected strains belonged to pseudomonads (Pseudomonas putida, P. fluorescence, P. aeruginosa, and P. alcaligenes) and their inocula were prepared using sterilized peat. The inoculated seeds of wild oat and wheat were sown together in a pot trial. The inoculated seeds of wild oat, little seed canary grass, and wheat were sown together in the field experiment. The field was selected based on chronic infestation of these weeds. However, weed invasion was ensured by adding seeds of weeds (inoculated with the respective strains of AB, according to treatment plan). A severe invasion of wild oat was observed in the pot trial, which reduced the grain yield of infested wheat up to 60.8%. The effectiveness of applied strains controlled 22.0–76.3% loss of grain yield of infested wheat. Weed invasion in the field trial reduced the grain yield of the crop up to 56.3% and effectiveness of the applied strains controlled 29.0–60.7% loss of grain yield of infested wheat. The study of other agronomic, physiological, and chemical parameters of the crop and weeds supported these findings. Harnessing the potential of these strains exhibited in our studies may be helpful to introduce an innovative, sustainable, and eco-friendly weed control technique for production of wheat.
Exploring intraspecific pollen morphology variation in Apocynaceae: A roadmap for horticultural innovation
This study aimed to examine the pollen and pollinia morpho-structure of 18 horticultural Apocynaceous species. Advanced light and scanning electron microscopy (LM and SEM) were used to elaborate on and examine the systematic importance of pollen and pollinia micromorphology. Pollen grains were first acetolysed, which was followed by visualisation of their sculpturing features. The quantified data were subjected to statistical tools to elucidate dendrogram clustering and principal component analysis to reveal pollen/pollinia morphotypes. The size of pollen is variable, ranging from 113.45 μm in to 23.4 μm in The study revealed tetrad, tetraporate, and tricolporate grains. Sculpturing (exine ornamentation) varies from reticulate perforate to reticulate. Pollinum shape was observed to be narrow oblong, obovate, orbicular, and reniform. Reticulate-psilate sculptural features were prominent among pollinia surfaces. Based on examination, it was ascertained that the minimum exine thickness in was 4.9 μm, whereas the corresponding number in was 1.35 μm. Taxonomic identification keys were constructed separately based on pollen/pollinia characters to identify the Apocynaceous taxa. In the presented study, seven pollen shapes were observed: from oblate to per prolate. The findings confirm that morphopollinic traits differ amongst genera of Apocynaceous species. However, these features can be used to distinguish the Apocynaceous taxa. The results show that structural characteristics of pollen and pollinia can help accurately identify Apocynaceous species.
Biologically active toxin from macroalgae Chaetomorpha antennina Bory, against the lepidopteran Spodoptera litura Fab. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb
BackgroundSeaweeds harbour a wide array of bioactive compounds shown to be effective in support of sustainable agricultural practices. The green seaweed Chaetomorpha antennina found in abundance in coastal areas of India has been reported with various bioactivities. Owing to the requirement of alternative and economical natural pest control method to be applied in sustainable agronomic strategies, the current study attempts to evaluate the efficacy of chemical toxins from C. antennina, as insecticidal agents, by inspecting their effects on the physiology, biochemistry, immune system, and histology of one of the most important insect pests of agricultural crops in the Asian tropics, the polyphagous lepidopteran Spodoptera litura.ResultsThe active fraction 5 isolated from C. antennina using methanol extraction produced significant mortality rates of S. litura among all the other fractions obtained. GC–MS analysis revealed the presence of various pesticide compounds. The toxin compounds (active fraction 5) were found to negatively influence the pest’s immune system performance at sub-lethal concentrations (LC50 38.73and LC90 53.60 ppm), affecting insect development, reducing the haemocyte count (69.24%) and reduced the activity of major defence enzyme phenoloxidase decreased post-treatments. Digestive phosphatase enzymes, acid phosphatase, ACP, alkaline phosphatase, ALP, and ATPase were demodulated by 37.5, 39, and 23.9% compared with untreated. Increase in detoxification enzymes coupled with mid-gut collapse are indicative of the toxicity of the compounds. Earthworms exposed to seaweed compounds displayed no debarring effects.ConclusionExtracted seaweed compounds produced significant lethal effect on the insect larvae, affecting the immune as well as digestive systems of the pest. However, no such toxicity was observed in earthworms treated with the seaweed fraction supporting their environmentally benign nature. Since the insect immune system is responsible for the development of resurgence against pesticides, suppression of immunological activities by seaweed toxins indicate the long-term applicability of these compounds as prospective pesticides. The results support the potential of chemicals from C. antennina for biopesticide development to manage economically important agricultural pests.
Nitrogen Contents in Soil, Grains, and Straw of Hybrid Rice Differ When Applied with Different Organic Nitrogen Sources
In the rice–wheat (R–W) system, inorganic nitrogen (N) fertilizer (urea, etc.) is the largest component of the N cycle, because the supply of N from organic fertilizers is insufficient. But the 4% Initiative aims to improve organic matter and stimulate carbon sequestration in soils using best agronomic practices (sustainable management practices) which are economically, environmentally, and socially friendly. This research project was, therefore, designed to assess the impact of various organic sources (OS, animal manure versus plant residues), inorganic N (urea), and their different combinations on the N concentrations in soils and plants (i.e., grains and straw) of hybrid rice plants. The experiments were conducted on farmers’ fields in Batkhela (Malakand), northwestern Pakistan, over 2 years (2011–2012 (Y1) and 2012–2013 (Y2)). The results revealed that N concentrations in soil as well as in rice plants ranked first when applied with urea-N, followed by the application of N in mixture (urea + OS), while the control plots (no N applied) ranked at the bottom. Among the six OS (three animal manures: poultry, sheep, and cattle; and three crop residues: onion, berseem, and wheat), application of N in the form of poultry manure was superior in terms of higher N concentrations in both soil and plants. Applying the required total N (120 kg N ha−1) in the form of 75% N from urea +25% N from OS resulted in higher N concentrations in soil and plants in Y1. The required total N (120 kg N ha−1) application in the form of 50% N from urea +50% N from OS produced higher N concentrations in soil and plants in Y2. It was concluded from the results, that combined application of N sources in the form of urea + OS can produce good performances in terms of higher N concentrations in soil as well as in rice plants under the R–W system. Integrated use of urea (N-fertilizer) with organic carbon sources (animal manures and crop residue) could sustain rice-based (exhaustive) cropping system.
The local medicinal plant knowledge in Kashmir Western Himalaya: a way to foster ecological transition via community-centred health seeking strategies
Background The mountainous region of Kashmir is a biodiversity hotspot, with diverse local communities and a rich cultural history linked to nature. Mountain ecosystems are highly vulnerable to climate change. This study emphasises the need to record the indigenous ethnoecological knowledge of wild plants used for the treatment of various ailments at higher elevations in remote areas where globalisation poses a threat to this traditional knowledge. Methods The field survey was carried out in 2020–2022, to collect data on wild medicinal plants. Informants were selected randomly to collect indigenous medicinal knowledge using semi-structured interviews and group discussions. Various quantitative indices were employed to evaluate ethnomedicinal data. Results A total of 110 medicinal plants belonging to 49 families were recorded in the study area. These medicinal plants are extensively used by local communities for the treatment of 20 major disease categories. Asteraceae was the dominant family contributing (9.09%) to medicinal plants, followed by Polygonaceae (8.18%), Apiaceae (7.27%), Lamiaceae (5.45%), and Ranunculaceae (5.45%). We observed 166 remedies were used for the treatment of various diseases in humans, and 9 remedies were used for animals. The most frequently used medicinal remedy was tea or decoction (30.91%). Among the medicinal plants, herbs (85.5%) were most frequently used by the local populations of Kashmir, whereas leaves (10.26%) were used for the treatment of various ailments. Out of 110 species, 31 were endemic, 15 of which are endemic to the Kashmir region and 16 to the Western Himalaya. The highest RFC value was reported for Allium humile (0.77), the highest UV value for Fritillaria cirrhosa (1.33), and the highest ICF value for gastro-intestinal/digestive disorders (0.85). Conclusions Local communities still rely on wild medicinal plants for primary healthcare. These communities retained valuable indigenous knowledge, which needs to be preserved for the conservation and sustainable utilisation of natural resources. Further field exploration is required to fully explore indigenous knowledge in the mountainous regions of Kashmir, and this knowledge has the potential to support the ongoing ecological transition.
Characteristics and optical properties of atmospheric aerosols based on long-term AERONET investigations in an urban environment of Pakistan
Radiative balance, local climate, and human health are all significantly influenced by aerosol. Recent severe air pollution over Lahore, a city in Pakistan calls for more thorough research to determine the negative impacts brought on by too many aerosols. To study regional aerosol characteristics and their differences from various aspects, in-depth and long-term (2007–2020) investigations of the columnar aerosol properties over the urban environment of Lahore were carried out by using AERONET data. The Aerosol Optical Depth (AOD 400 ) and Angstrom Exponent (AE 400–870 ) vary from low values of 0.10 to a maximum value of 4.51 and from 0.03 to 1.81, respectively. The huge differences in the amount of AOD 440 as well as AE 440–870 show the large fluctuation of aerosol classes because of various sources of their emission. During the autumn and winter seasons, the decreasing trend of the optical parameters of aerosols like Single Scattering Albedo (SSA) and Asymmetry Parameter (ASY) with increasing wavelength from 675 to 1020 nm indicates the dominance of light-absorbing aerosols (biomass burning (BB) and industrial/urban (UI). Due to the long-distance dust movement during spring, summer, and autumn, coarse mode particles predominated in Lahore during the study period. Dust type (DD) aerosols are found to be the dominant one during spring (46.92%), summer (54.31%), and autumn (57.46%) while urban industry (BB/UI) was dominant during the winter season (53.21%). During each season, the clean continental (CC) aerosols are found to be in negligible amounts, indicating terrible air quality in Lahore City. The present research work fills up the study gap in the optical properties of aerosols in Lahore and will help us understand more fully how local aerosol fluctuation affects regional climate change over the urban environment of Lahore.
Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal
Herein, we systematically reported the capability of T. harzianum RY44 for decolorization of Mordant orange-1. The fungi strains were isolated from the Universiti Teknologi Malaysia tropical rain forest. For initial screening, the decolorization was conducted using 50 strains of the fungi for 20 days incubation time and the best performance was selected. Then, the decolorization capability and fungal biomass were evaluated using different dye concentrations, namely, 0, 50, 75 and 100 ppm. Effects of the carbon sources (fructose, glucose, and galactose), nitrogen sources (ammonium nitrate, ammonium sulfate and yeast extract), surfactant (tween 80), aromatic compounds (benzoic acid, catechol and salicylic acid), and pH on the decolorization efficiency were examined. This study has found that the employed carbon sources, nitrogen sources, and aromatic compounds strongly enhance the decolorization efficiency. In addition, increasing the surfactant volume and pH generally decreased the decolorization efficiencies from 19.5 to 9.0% and 81.7 to 60.5%, respectively. In the mechanism philosophy, the present work has found that Mordant orange-1 were initially degraded by T. harzianum RY44 to benzoic acid and finally transformed into salicylic acid.
Characterization of pyrene and chrysene degradation by halophilic Hortaea sp. B15
Polycyclic aromatics hydrocarbons (PAHs) are ubiquitous and toxic pollutants that are dangerous to humans and living organism in aquatic environment. Normally, PAHs has lower molecular weight such as phenanthrene and naphthalene that are easy and efficient to degrade, but high-molecular-weight PAHs such as chrysene and pyrene are difficult to be biodegraded by common microorganism. This study investigated the isolation and characterization of a potential halophilic bacterium capable of utilizing two high-molecular-weight PAHs. At the end of the experiment (25–30 days of incubation), bacterial counts have reached a maximum level (over 40 × 1016 CFU/mL). The highest biodegradation rate of 77% of chrysene in 20 days and 92% of pyrene in 25 days was obtained at pH 7, temperature 25 °C, agitation of 150 rpm and Tween 80 surfactant showing to be the most impressive parameters for HMWPAHs biodegradation in this research. The metabolism of initial compounds revealed that Hortaea sp. B15 utilized pyrene to form phthalic acid while chrysene was metabolized to form 1-hydroxy-2-naphthoic acid. The result showed that Hortaea sp. B15 can be promoted for the study of in situ biodegradation of high molecular weight PAH.