Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Elshkaki, Ayman"
Sort by:
Sustainability of emerging energy and transportation technologies is impacted by the coexistence of minerals in nature
Wind power and electric vehicles can help reduce carbon dioxide emissions and improve air quality. However, these technologies rely on rare metals whose extraction requires large amounts of energy and water and are high in carbon emissions. Here we consider the sustainability of both technologies and the impacts of rare earth elements co-extraction. We use a global dynamic material flow-stock model and several scenarios for rare earth elements demand and supply. Cumulative carbon dioxide equivalent emissions associated with rare earth metals oversupply was between 5.5 and 6.4 times the emissions associated with dysprosium and neodymium production when dysprosium demand was increased. Carbon dioxide equivalent emissions associated with metals extraction and production were equivalent to between 10% and 29% of carbon dioxide emissions reduction through electric vehicle use. Targeting metal rich deposits and increased material efficiency and recycling reduced carbon dioxide emissions by 78%, 39% and 35%, and combined by 90%. Our findings highlight the role of resource efficiency and recycling in enhancing clean energy technologies.
Energy Transition towards Carbon Neutrality
Carbon peaking and neutralization in the next 20 to 40 years are significant to limit the temperature increase to well below 2 °C and avoid the negative impacts of climate change caused by the sharp increase in carbon dioxide emissions [...]
Global Energy Transition and Low Carbon Technology Pathways
The transition of the global energy system toward decarbonization has emerged as a paramount research focus in contemporary academic and industrial discourse [...]
Progress and Policy Considerations to Achieve Energy Transition and Carbon Mitigation
The global paradigm shift toward carbon neutrality represents one of the most complex and consequential socioeconomic transformations of the twenty-first century [...]
Materials, energy, water, and emissions nexus impacts on the future contribution of PV solar technologies to global energy scenarios
PV technologies are increasingly making significant contribution to global energy generation (GEG), attributed to their high potential of increasing efficiency, cost reduction, and improving energy security. These technologies however rely on metals that are identified as critical due to risks associated with their supply, and other materials that require energy and water for their production. In this paper, a comprehensive assessment of required materials for PV technologies, an analysis of their materials inflows, outflows, and stocks, an estimate of their maximum contribution to global energy scenarios (GES), and an estimate of energy and water required for their material production and associated CO 2 emissions under the nexus approach, have been carried out using a dynamic material flow-stock model. A total of 100 energy-material nexus scenarios, which combines 10 GES and 10 materials scenarios, have been analysed. Results indicate that although most GES are difficult to be realized under current PV technologies market share and condition; these technologies could make significant contribution to GEG in future. The three commercial thin-film PV technologies could produce between 3% and 22% of electricity generation in IEA-450 scenario. Energy required for PV materials production is expected to reach between 5.9% and 11.8% of electricity generated (EG) by PV solar and between 0.76% and 1.52% of total EG in IEA-450 scenario by 2050. CO 2 emissions associated with material production are expected to be between 0.94% and 2.2% of total CO 2 emissions in IEA-450 scenario by 2050.
Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017
Decoupling energy, water, and food (EWF) consumption and production from GHG emissions could be an important strategy for achieving the UN Sustainable Development Goals (SDGs), especially SDG 2 (Zero Hunger), SDG 6 (Clean Water and Sanitation), and SDG 7 (Clean and Affordable Energy) in Africa. This study applies Tapio’s decoupling method to analyze the relationship between GHG emissions and EWF resources use in 15 African countries over the period 1990–2017. The results show a remarkable relationship, which includes the contamination of EWF by GHG emissions, that mostly exhibits unsatisfactory decoupling state to satisfactory decoupling over a period of several years. The decoupling of water and energy resources from GHG emissions in most countries of Africa has not been able to reach an excellent decoupling state or a strong positive decoupling state. This requires countries in Africa to support environmentally friendly water and energy infrastructures and to promote an integrated, mutually managed, whole resource interaction system. The study also highlights the importance of tracking sources of GHG emissions, whether within individual resource sector activities or across resources to each other.
Editorial: Toward carbon neutrality: Spatial planning and sustainable utilization of natural resource
The main innovation of this study lies in the comprehensive analysis of the carbon emission sources of relevant enterprises from six aspects, including fuel combustion, torch burning, CH4 and CO2 dissipation, net purchased electricity and heat implication, coal gangue storage and utilization, and coal transportation. [...]the source–sink relationship method is proposed when the CH4 and CO2 dissipation is calculated. The study provides evidence on the significant pressure (in terms of high-water consumption) that the local renewable energy industry can exert on water resources in areas such as north-western China, which are plagued by long-term water scarcity. Sun et al. explored the path of urban energy reform and low-carbon development for the industrial energy system in the city of Suzhou, which is an energy-dependent city in China that is dominated using coal for energy consumption mainly in the industrial sector. The study shows that the comprehensive scenario had the best coordination benefit for the coupling system, which will reduce CO2 by 17.14 million tons, water consumption by 158 million m3, energy consumption by 5.58 million tons of standard coal and economic growth by 175.21 billion yuan in 2029.
Evaluation of Regional Carrying Capacity under Economic-Social-Resource-Environment Complex System: A Case Study of the Yangtze River Economic Belt
As a rigid constraint of the scale and speed of regional economic-social development, carrying capacity is an endogenous variable of regional sustainable development potential. Concepts such as ecological footprint and virtual water have been introduced into the research field of carrying capacity, but dynamic and comprehensive problems in carrying capacity have not been effectively solved. This paper attempts to overcome these limitations by taking the regional factor aggregation degree as the weight and the regional green GDP as the carrying object. Based on the economic-social supplying force, resource supporting force, and environmental constraint force, from the perspective of comprehensive factors assessment, we have constructed an evaluation system of regional carrying capacity index, including mineral, water, and bioecological resources, as well as labor and other factors, and evaluated the regional carrying capacity of 11 provinces and cities along the Yangtze River Economic Belt. The results indicate that (1) the supporting force of the resource subsystem becomes the most critical factor affecting the carrying capacity of the Yangtze River Economic Belt, and the cross-regional flow potential of resource factors increases the regional carrying capacity threshold. (2) The regional carrying capacity, economic-social, resource and environmental subsystems of the Yangtze River Economic Belt are steadily improving, and the overall trend is positive. The quantified dynamic evaluation of regional economic-social, resource and environmental carrying capacity provides a theoretical support for the construction of the Yangtze River Economic Belt eco-priority green development demonstration area.
Study on Relative Carrying Capacity of Land Resources and Its Zoning in 31 Provinces of China
Land carrying capacity is an important indicator to quantitatively assess and judge the extents of sustainable economic developing and coexistent harmonizing between human and nature. The significance of land carrying capacity has been highlighted recently by the Sustainable Development Goals (SDGs) of the United Nations, which set clear requirements for arable, construction, and ecological lands. Theories and models of land carrying capacity, however, are suffering from the interference of artificial parameter setting and poor applicability. This paper attempts to overcome these limitations and propose a single factor assessment of the carrying capacity of cultivated land, construction land, and ecological land in terms of the relative carrying capacity from the perspective of a single factor assessment. Through mutual comparison, we found that the deviation caused by simulated parameter setting has been eliminated, and the relative status of each province and/or region in China has been obtained, which could provide a reference for the management and utilization of land resources. We argue that China can achieve basic self-sufficiency in both space capacity and food production without placing pressure on the global sustainable development. The results also indicate that carrying capacity state of the advanced development areas such as the eastern coastal region is relatively poor, while the carrying capacity state of the western region is relatively good.
Economic Structure Transformation and Low-Carbon Development in Energy-Rich Cities: The Case of the Contiguous Area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China
Energy-rich cities tend to rely on resource-based industries for economic growth, which leads to a great challenge for its low-carbon and sustainable economic development. The contiguous area of Shanxi and Shaanxi Provinces, and the Inner Mongolia Autonomous Region (SSIM) is one of the most important national energy bases in China. Its development pattern, dominated by the coal industry, has led to increasingly prominent structural problems along with difficult low-carbon transition. Taking energy-rich cities in the contiguous area of SSIM as examples, this study analyzes the main drivers of CO2 emissions and explores the role of economic structure transformation in carbon emission reduction during 2002–2012 based on structural decomposition analysis (SDA). The results show that CO2 emissions increase significantly with the coal industry expansion in energy-rich cities. Economic growth and structure are the main drivers of CO2 emission increments. An energy structure dominated by coal and improper product allocation structure can also cause CO2 emission increases. Energy consumption intensity is the main factor curbing CO2 emission growth in energy-rich cities. The decline of agriculture and services contributes to carbon emission reduction, while the expansion of mining and primary energy processing industries has far greater effects on CO2 emission growth. Finally, we propose that energy-rich cities must make more efforts to transform energy-driven economic growth patterns, cultivate new pillar industries by developing high-end manufacturing, improve energy efficiency through more investment in key technologies and the market-oriented reform of energy pricing and develop natural gas and renewable energy to accelerate low-carbon transition.