Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Elsworth, Benjamin"
Sort by:
Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer
2018
The cellular and molecular basis of stromal cell recruitment, activation and crosstalk in carcinomas is poorly understood, limiting the development of targeted anti-stromal therapies. In mouse models of triple negative breast cancer (TNBC), Hedgehog ligand produced by neoplastic cells reprograms cancer-associated fibroblasts (CAFs) to provide a supportive niche for the acquisition of a chemo-resistant, cancer stem cell (CSC) phenotype via FGF5 expression and production of fibrillar collagen. Stromal treatment of patient-derived xenografts with smoothened inhibitors (SMOi) downregulates CSC markers expression and sensitizes tumors to docetaxel, leading to markedly improved survival and reduced metastatic burden. In the phase I clinical trial EDALINE, 3 of 12 patients with metastatic TNBC derived clinical benefit from combination therapy with the SMOi Sonidegib and docetaxel chemotherapy, with one patient experiencing a complete response. These studies identify Hedgehog signaling to CAFs as a novel mediator of CSC plasticity and an exciting new therapeutic target in TNBC.
Stromal cell recruitment, activation and crosstalk with cancer cells is poorly understood. Here, the authors demonstrate that cancer cell-derived Hedgehog ligand triggers stromal remodeling that in turn induces a cancer-stem-cell like, drug-resistant phenotype of nearby cancer cells while treatment with smoothened inhibitors reverses these phenotypes.
Journal Article
Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases
2020
The human proteome is a major source of therapeutic targets. Recent genetic association analyses of the plasma proteome enable systematic evaluation of the causal consequences of variation in plasma protein levels. Here we estimated the effects of 1,002 proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not supported by results of colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium is widespread in naïve phenome-wide association studies of proteins. Combining MR and colocalization evidence in
cis
-only analyses, we identified 111 putatively causal effects between 65 proteins and 52 disease-related phenotypes (
https://www.epigraphdb.org/pqtl/
). Evaluation of data from historic drug development programs showed that target-indication pairs with MR and colocalization support were more likely to be approved, evidencing the value of this approach in identifying and prioritizing potential therapeutic targets.
Mendelian randomization (MR) and colocalization analyses are used to estimate causal effects of 1,002 plasma proteins on 225 phenotypes. Evidence from drug developmental programs shows that target-indication pairs with MR and colocalization support were more likely to be approved, highlighting the value of this approach for prioritizing therapeutic targets.
Journal Article
Characterising metabolomic signatures of lipid-modifying therapies through drug target mendelian randomisation
by
Holmes, Michael V.
,
Richardson, Tom G.
,
Elsworth, Benjamin
in
Angiopoietin-Like Protein 3
,
Angiopoietin-like Proteins
,
Biochemistry
2022
Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1 ) , high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r 2 = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r 2 < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.
Journal Article
The MR-Base platform supports systematic causal inference across the human phenome
by
Martin, Richard M
,
Shihab, Hashem A
,
Gaunt, Tom R
in
Applications programming
,
Cardiovascular disease
,
causal inference
2018
Results from genome-wide association studies (GWAS) can be used to infer causal relationships between phenotypes, using a strategy known as 2-sample Mendelian randomization (2SMR) and bypassing the need for individual-level data. However, 2SMR methods are evolving rapidly and GWAS results are often insufficiently curated, undermining efficient implementation of the approach. We therefore developed MR-Base ( http://www.mrbase.org ): a platform that integrates a curated database of complete GWAS results (no restrictions according to statistical significance) with an application programming interface, web app and R packages that automate 2SMR. The software includes several sensitivity analyses for assessing the impact of horizontal pleiotropy and other violations of assumptions. The database currently comprises 11 billion single nucleotide polymorphism-trait associations from 1673 GWAS and is updated on a regular basis. Integrating data with software ensures more rigorous application of hypothesis-driven analyses and allows millions of potential causal relationships to be efficiently evaluated in phenome-wide association studies. Our health is affected by many exposures and risk factors, including aspects of our lifestyles, our environments, and our biology. It can, however, be hard to work out the causes of health outcomes because ill-health can influence risk factors and risk factors tend to influence each other. To work out whether particular interventions influence health outcomes, scientists will ideally conduct a so-called randomized controlled trial, where some randomly-chosen participants are given an intervention that modifies the risk factor and others are not. But this type of experiment can be expensive or impractical to conduct. Alternatively, scientists can also use genetics to mimic a randomized controlled trial. This technique – known as Mendelian randomization – is possible for two reasons. First, because it is essentially random whether a person has one version of a gene or another. Second, because our genes influence different risk factors. For example, people with one version of a gene might be more likely to drink alcohol than people with another version. Researchers can compare people with different versions of the gene to infer what effect alcohol drinking has on their health. Every day, new studies investigate the role of genetic variants in human health, which scientists can draw on for research using Mendelian randomization. But until now, complete results from these studies have not been organized in one place. At the same time, statistical methods for Mendelian randomization are continually being developed and improved. To take advantage of these advances, Hemani, Zheng, Elsworth et al. produced a computer programme and online platform called “MR-Base”, combining up-to-date genetic data with the latest statistical methods. MR-Base automates the process of Mendelian randomization, making research much faster: analyses that previously could have taken months can now be done in minutes. It also makes studies more reliable, reducing the risk of human error and ensuring scientists use the latest methods. MR-Base contains over 11 billion associations between people’s genes and health-related outcomes. This will allow researchers to investigate many potential causes of poor health. As new statistical methods and new findings from genetic studies are added to MR-Base, its value to researchers will grow.
Journal Article
Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome
by
Gaunt, Tom R.
,
Zheng, Jie
,
Mangravite, Lara M.
in
Alzheimer Disease - drug therapy
,
Alzheimer Disease - genetics
,
Biology and Life Sciences
2021
Discovering drugs that efficiently treat brain diseases has been challenging. Genetic variants that modulate the expression of potential drug targets can be utilized to assess the efficacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR) on gene expression measured in brain tissue to identify drug targets involved in neurological and psychiatric diseases. We conducted a two-sample MR using cis-acting brain-derived expression quantitative trait loci (eQTLs) from the Accelerating Medicines Partnership for Alzheimer’s Disease consortium (AMP-AD) and the CommonMind Consortium (CMC) meta-analysis study (n = 1,286) as genetic instruments to predict the effects of 7,137 genes on 12 neurological and psychiatric disorders. We conducted Bayesian colocalization analysis on the top MR findings (using P<6x10 -7 as evidence threshold, Bonferroni-corrected for 80,557 MR tests) to confirm sharing of the same causal variants between gene expression and trait in each genomic region. We then intersected the colocalized genes with known monogenic disease genes recorded in Online Mendelian Inheritance in Man (OMIM) and with genes annotated as drug targets in the Open Targets platform to identify promising drug targets. 80 eQTLs showed MR evidence of a causal effect, from which we prioritised 47 genes based on colocalization with the trait. We causally linked the expression of 23 genes with schizophrenia and a single gene each with anorexia, bipolar disorder and major depressive disorder within the psychiatric diseases and 9 genes with Alzheimer’s disease, 6 genes with Parkinson’s disease, 4 genes with multiple sclerosis and two genes with amyotrophic lateral sclerosis within the neurological diseases we tested. From these we identified five genes ( ACE , GPNMB , KCNQ5 , RERE and SUOX ) as attractive drug targets that may warrant follow-up in functional studies and clinical trials, demonstrating the value of this study design for discovering drug targets in neuropsychiatric diseases.
Journal Article
Coffee consumption and risk of breast cancer: A Mendelian randomization study
2021
Observational studies have reported either null or weak protective associations for coffee consumption and risk of breast cancer.
We conducted a two-sample Mendelian randomization (MR) analysis to evaluate the relationship between coffee consumption and breast cancer risk using 33 single-nucleotide polymorphisms (SNPs) associated with coffee consumption from a genome-wide association (GWA) study on 212,119 female UK Biobank participants of White British ancestry. Risk estimates for breast cancer were retrieved from publicly available GWA summary statistics from the Breast Cancer Association Consortium (BCAC) on 122,977 cases (of which 69,501 were estrogen receptor (ER)-positive, 21,468 ER-negative) and 105,974 controls of European ancestry. Random-effects inverse variance weighted (IVW) MR analyses were performed along with several sensitivity analyses to assess the impact of potential MR assumption violations.
One cup per day increase in genetically predicted coffee consumption in women was not associated with risk of total (IVW random-effects; odds ratio (OR): 0.91, 95% confidence intervals (CI): 0.80-1.02, P: 0.12, P for instrument heterogeneity: 7.17e-13), ER-positive (OR = 0.90, 95% CI: 0.79-1.02, P: 0.09) and ER-negative breast cancer (OR: 0.88, 95% CI: 0.75-1.03, P: 0.12). Null associations were also found in the sensitivity analyses using MR-Egger (total breast cancer; OR: 1.00, 95% CI: 0.80-1.25), weighted median (OR: 0.97, 95% CI: 0.89-1.05) and weighted mode (OR: 1.00, CI: 0.93-1.07).
The results of this large MR study do not support an association of genetically predicted coffee consumption on breast cancer risk, but we cannot rule out existence of a weak association.
Journal Article
MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer
2018
Docetaxel and cabazitaxel are taxane chemotherapy treatments for metastatic castration-resistant prostate cancer (CRPC). However, therapeutic resistance remains a major issue. MicroRNAs are short non-coding RNAs that can silence multiple genes, regulating several signalling pathways simultaneously. Therefore, synthetic microRNAs may have therapeutic potential in CRPC by regulating genes involved in taxane response and minimise compensatory mechanisms that cause taxane resistance. To identify microRNAs that can improve the efficacy of taxanes in CRPC, we performed a genome-wide screen of 1280 microRNAs in the CRPC cell lines PC3 and DU145 in combination with docetaxel or cabazitaxel treatment. Mimics of miR-217 and miR-181b-5p enhanced apoptosis significantly in PC3 cells in the presence of these taxanes. These mimics downregulated at least a thousand different transcripts, which were enriched for genes with cell proliferation and focal adhesion functions. Individual knockdown of a selection of 46 genes representing these transcripts resulted in toxic or taxane sensitisation effects, indicating that these genes may be mediating the effects of the microRNA mimics. A range of these genes are expressed in CRPC metastases, suggesting that these microRNA mimics may be functional in CRPC. With further development, these microRNA mimics may have therapeutic potential to improve taxane response in CRPC patients.
Journal Article
A phenome-wide approach to identify causal risk factors for deep vein thrombosis
by
Elsworth, Benjamin
,
Zheng, Jie
,
Timpson, Nicholas J.
in
Adipose tissue
,
ALSPAC
,
Anticoagulants
2023
Deep vein thrombosis (DVT) is the formation of a blood clot in a deep vein. DVT can lead to a venous thromboembolism (VTE), the combined term for DVT and pulmonary embolism, a leading cause of death and disability worldwide. Despite the prevalence and associated morbidity of DVT, the underlying causes are not well understood. Our aim was to leverage publicly available genetic summary association statistics to identify causal risk factors for DVT. We conducted a Mendelian randomization phenome-wide association study (MR-PheWAS) using genetic summary association statistics for 973 exposures and DVT (6,767 cases and 330,392 controls in UK Biobank). There was evidence for a causal effect of 57 exposures on DVT risk, including previously reported risk factors (e.g. body mass index—BMI and height) and novel risk factors (e.g. hyperthyroidism and varicose veins). As the majority of identified risk factors were adiposity-related, we explored the molecular link with DVT by undertaking a two-sample MR mediation analysis of BMI-associated circulating proteins on DVT risk. Our results indicate that circulating neurogenic locus notch homolog protein 1 (NOTCH1), inhibin beta C chain (INHBC) and plasminogen activator inhibitor 1 (PAI-1) influence DVT risk, with PAI-1 mediating the BMI-DVT relationship. Using a phenome-wide approach, we provide putative causal evidence that hyperthyroidism, varicose veins and BMI enhance the risk of DVT. Furthermore, the circulating protein PAI-1 has a causal role in DVT aetiology and is involved in mediating the BMI-DVT relationship.
Journal Article
Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study
by
Elsworth, Benjamin
,
Tilling, Kate
,
Sanderson, Eleanor
in
Adipose tissue
,
Adiposity - genetics
,
Adults
2020
AbstractObjectiveTo evaluate whether body size in early life has an independent effect on risk of disease in later life or whether its influence is mediated by body size in adulthood.DesignTwo sample univariable and multivariable mendelian randomisation.SettingThe UK Biobank prospective cohort study and four large scale genome-wide association studies (GWAS) consortiums.Participants453 169 participants enrolled in UK Biobank and a combined total of more than 700 000 people from different GWAS consortiums.ExposuresMeasured body mass index during adulthood (mean age 56.5) and self-reported perceived body size at age 10.Main outcome measuresCoronary artery disease, type 2 diabetes, breast cancer, and prostate cancer.ResultsHaving a larger genetically predicted body size in early life was associated with an increased odds of coronary artery disease (odds ratio 1.49 for each change in body size category unless stated otherwise, 95% confidence interval 1.33 to 1.68) and type 2 diabetes (2.32, 1.76 to 3.05) based on univariable mendelian randomisation analyses. However, little evidence was found of a direct effect (ie, not through adult body size) based on multivariable mendelian randomisation estimates (coronary artery disease: 1.02, 0.86 to 1.22; type 2 diabetes:1.16, 0.74 to 1.82). In the multivariable mendelian randomisation analysis of breast cancer risk, strong evidence was found of a protective direct effect for larger body size in early life (0.59, 0.50 to 0.71), with less evidence of a direct effect of adult body size on this outcome (1.08, 0.93 to 1.27). Including age at menarche as an additional exposure provided weak evidence of a total causal effect (univariable mendelian randomisation odds ratio 0.98, 95% confidence interval 0.91 to 1.06) but strong evidence of a direct causal effect, independent of early life and adult body size (multivariable mendelian randomisation odds ratio 0.90, 0.85 to 0.95). No strong evidence was found of a causal effect of either early or later life measures on prostate cancer (early life body size odds ratio 1.06, 95% confidence interval 0.81 to 1.40; adult body size 0.87, 0.70 to 1.08).ConclusionsThe findings suggest that the positive association between body size in childhood and risk of coronary artery disease and type 2 diabetes in adulthood can be attributed to individuals remaining large into later life. However, having a smaller body size during childhood might increase the risk of breast cancer regardless of body size in adulthood, with timing of puberty also putatively playing a role.
Journal Article
A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags
by
O'Mahony Zamora, Georgina
,
Wong, Simon
,
Phillips, Mark
in
Biomedical and Life Sciences
,
Biomedicine
,
Cloning
2012
Background
Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis.
Panagrolaimus superbus
is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that
P. superbus
uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis.
Results
To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of
P. superbus
. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at
http://www.nematodes.org/nembase4/species_info.php?species=PSC
. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from
P. superbus
. Notable among those is a putative lineage expansion of the
lea
(late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific
sxp/ral-2
family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from
Phytophthora infestans
. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This
P. superbus
sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants
glutathione peroxidase, dj-1
and
1-Cys peroxiredoxin
, an
shsp
sequence and an
lea
gene.
Conclusions
P. superbus
appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of
lea
genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of
P. superbus
.
Journal Article