Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Emma J. Schuster"
Sort by:
ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer
Circulating tumor cell (CTC) clusters mediate metastasis at a higher efficiency and are associated with lower overall survival in breast cancer compared to single cells. Combining single-cell RNA sequencing and protein analyses, here we report the profiles of primary tumor cells and lung metastases of triple-negative breast cancer (TNBC). ICAM1 expression increases by 200-fold in the lung metastases of three TNBC patient-derived xenografts (PDXs). Depletion of ICAM1 abrogates lung colonization of TNBC cells by inhibiting homotypic tumor cell-tumor cell cluster formation. Machine learning-based algorithms and mutagenesis analyses identify ICAM1 regions responsible for homophilic ICAM1-ICAM1 interactions, thereby directing homotypic tumor cell clustering, as well as heterotypic tumor-endothelial adhesion for trans-endothelial migration. Moreover, ICAM1 promotes metastasis by activating cellular pathways related to cell cycle and stemness. Finally, blocking ICAM1 interactions significantly inhibits CTC cluster formation, tumor cell transendothelial migration, and lung metastasis. Therefore, ICAM1 can serve as a novel therapeutic target for metastasis initiation of TNBC. Circulating tumor cell (CTC) clusters are more efficient at mediating metastasis as compared to single cells and are associated with poor prognosis in breast cancer. Here, the authors show that ICAM1 is enriched in CTC clusters and its loss suppresses cell-cell interaction and CTC cluster formation, and propose ICAM1 as a therapeutic target for treating breast cancer metastasis.
EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer
Triple-negative breast cancer (TNBC) is one of the most aggressive and metastatic breast cancer subtypes lacking targeted therapy. Our recent work demonstrated that circulating tumor cell (CTC) clusters and polyclonal metastasis of TNBC are driven by aggregation of CD44 cancer stem cells (CSC) and associated with an unfavorable prognosis, such as low overall survival. However, there is no existing therapeutic that can specifically block CTC or CSC cluster formation. Using patient-derived xenograft (PDX) models, we established an tumor cell clustering assay for a pilot screening of blockade antibodies. After identifying EGFR as a target candidate, we modulated the gene expression and inhibited its kinase activity to determine its functional importance in tumor cell clustering and therapeutic inhibition of lung metastasis. We also examined the molecular regulation network of EGFR and a potential connection to CSC marker CD44 and microRNAs, which regulate CTC clustering. We report here that EGFR inhibition successfully blocks circulating CSC (cCSC) clustering and lung metastasis of TNBC. EGFR enhances CD44-mediated tumor cell aggregation and CD44 stabilizes EGFR. Importantly, blocking EGFR by a novel anti-EGFR monoclonal antibody (clone LA1) effectively blocked cell aggregation and reduced lung metastasis . Furthermore, our data demonstrated that the tumor suppressor microRNA-30c serves as another negative regulator of cCSC clustering and lung metastasis by targeting CD44 as well as its downstream effector EGFR. Our studies identify a novel anti-EGFR therapeutic strategy to inhibit cCSC aggregation and therefore abolish cCSC cluster-mediated metastasis of TNBC.
Machine learning-assisted elucidation of CD81–CD44 interactions in promoting cancer stemness and extracellular vesicle integrity
Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is coexpressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC.
CD81 partners with CD44 in promoting exosome biogenesis, tumor cluster formation, and lung metastasis in triple negative breast cancer
Tumor-initiating cells with reprogramming plasticity are thought to be essential for cancer development and metastatic regeneration in many cancers; however, the molecular mechanisms are not fully understood. This study reports that CD81, a tetraspanin protein marker of small extracellular vesicles (exosomes), functions as a binding partner of CD44 and facilitates self-renewal of tumor initiating cells. Using machine learning-assisted protein structure modeling, co-immunoprecipitation, and mutagenesis approaches, we further demonstrate that CD81 interacts with CD44 on the cellular membrane through their extracellular regions. In-depth global and phosphoproteomic analyses of clustering tumor cells unveils endocytosis-related signature pathways of proteins and phosphorylation patterns regulated by CD81 and CD44 specifically or shared between two. Notably, CRISPR Cas9-mediated depletion of either CD44 or CD81 results in loss of both proteins in cancer cell-secreted exosomes, a state which abolishes exosome-induced self-renewal of recipient cells for mammosphere formation. CD81 is expressed in >80% of human circulating tumor cells (CTCs) and specifically enriched in clustered CTCs along with CD44 isolated from breast cancer patients. Mimicking the phenotypes of CD44 deficiency, loss of CD81 also inhibits tumor cluster aggregation, tumorigenesis, and lung metastasis of triple negative breast cancer (TNBC), supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights the novel role of CD81 and its partnership with CD44 in cancer exosomes, self-renewal, CTC clustering, and metastasis initiation of TNBC.
Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon
The carbon–carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (−0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials. Trapping carbon dioxide within usable chemicals is a promising means to mitigate climate change, yet electrochemical C–C couplings are challenging to perform. Here, the authors prepared iron oxyhydroxides on nitrogen-doped carbon that efficiently convert carbon dioxide to acetic acid.
PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma
In a small series of patients with refractory Hodgkin's lymphoma, a substantial rate of tumor regression (87%) was documented in response to blockade of the programmed death 1 pathway. The programmed death 1 (PD-1) pathway serves as a checkpoint to limit T-cell–mediated immune responses. 1 Both PD-1 ligands, PD-L1 and PD-L2, engage the PD-1 receptor and induce PD-1 signaling and associated T-cell “exhaustion,” a reversible inhibition of T-cell activation and proliferation. 1 By expressing PD-1 ligands on the cell surface and engaging PD-1 receptor–positive immune effector cells, tumors can co-opt the PD-1 pathway to evade an immune response. 2 PD-1–blocking antibodies have been used to enhance immunity in solid tumors and obtain durable clinical responses with an acceptable safety profile. 2 – 5 Preliminary data also support empirical PD-1 blockade as a therapeutic strategy . . .
The proteomic landscape of soft tissue sarcomas
Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research. Characterising the molecular profile of soft tissue sarcomas (STS) remains critical. Here, the authors analyse samples from 321 STS patients across 11 histological subtypes using proteomics and identify prognostic signatures that can be applied to multiple subtypes.
Computational ranking identifies Plexin-B2 in circulating tumor cell clustering with monocytes in breast cancer metastasis
Multicellular circulating tumor cell (CTC) clusters can be up to 50 times more efficient than single CTCs in mediating viable metastasis. Here, combining computational ranking and functional determination, we identify the transmembrane protein Plexin-B2 (PLXNB2) as one of the top molecular targets associated with unfavorable distant metastasis-free survival, showing enriched expression in CTC clusters versus single CTCs from patients with advanced breast cancer (mostly female). Loss of PLXNB2 (Plxnb2) reduces the formation of homotypic tumor cell clusters and heterotypic tumor-myeloid cell clusters, reducing spontaneous metastases in female mice bearing human (mouse) breast cancer. Interactions of PLXNB2 with its ligands SEMA4C on tumor cells and SEMA4A on myeloid cells (monocytes) promote homotypic and heterotypic CTC cluster formation, respectively, thereby driving lung metastasis. Global proteomic analysis reveals downstream effectors of the PLXNB2 pathway associated with tumor cell clustering. Thus, PLXNB2 is a therapeutic target for preventing new metastasis in breast cancer. Circulating tumor cell (CTC) clusters are much more likely to produce viable metastasis than single CTCs. Here the authors find that the transmembrane protein Plexin-B2 (PLXNB2) mediates homotypic and heterotypic CTC cluster formation, driving lung metastasis in breast cancer mouse models.
Implementing evidence-based practices in the care of infants with bronchiolitis in Australasian acute care settings: study protocol for a cluster randomised controlled study
Background Bronchiolitis is the most common reason for admission to hospital for infants less than one year of age. Although management is well defined, there is substantial variation in practice, with infants receiving ineffective therapies or management. This study will test the effectiveness of tailored, theory informed knowledge translation (KT) interventions to decrease the use of five clinical therapies or management processes known to be of no benefit, compared to usual dissemination practices in infants with bronchiolitis. The primary objective is to establish whether the KT interventions are effective in increasing compliance to five evidence based recommendations in the first 24 h following presentation to hospital. The five recommendations are that infants do not receive; salbutamol, antibiotics, glucocorticoids, adrenaline, or a chest x-ray. Methods/design This study is designed as a cluster randomised controlled trial. We will recruit 24 hospitals in Australia and New Zealand, stratified by country and provision of tertiary or secondary paediatric care. Hospitals will be randomised to either control or intervention groups. Control hospitals will receive a copy of the recent Australasian Bronchiolitis Guideline. Intervention hospitals will receive KT interventions informed by a qualitative analysis of factors influencing clinician care of infants with bronchiolitis. Key interventions include, local stakeholder meetings, identifying medical and nursing clinical leads in both emergency departments and paediatric inpatient areas who will attend a single education train-the-trainer day to then deliver standardised staff education with the training materials provided and coordinate audit and feedback reports locally over the study period. Data will be extracted retrospectively for three years prior to the study intervention year, and for seven months of the study intervention year bronchiolitis season following intervention delivery to determine compliance with the five evidence-based recommendations. Data will be collected to assess fidelity to the implementation strategies and to facilitate an economic evaluation. Discussion This study will contribute to the body of knowledge to determine the effectiveness of tailored, theory informed interventions in acute care paediatric settings, with the aim of reducing the evidence to practice gaps in the care of infants with bronchiolitis. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12616001567415 (retrospectively registered on 14 November 2016).