Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Encina-Montoya, Francisco"
Sort by:
Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria-Nothofagus Forests
Fire is one of the main drivers of anthropogenic disturbances in temperate forest ecosystems worldwide, with multiple effects spread across ecological networks. Nevertheless, the biodiversity effects of fire are poorly known for species-diverse groups such as arthropods. In this research, we used a burn gradient generated two and three years after a large fire event to assess how different levels of fire severity affect arthropod diversity in the forest with the main forest forming long-living tree species Araucaria araucana, in southern Chile. The species richness and abundance of arthropods among trophic guilds was estimated annually in four fire-severity levels. We found that arthropods responded differently to fire severity levels, depending on their trophic guilds and years after fire (two and three years after fire). During the second year after fire, zoophages, phytophages, and parasitoids were more diverse in areas with high fire severity within the second year after fire, as compared to those in areas with low severity or unburned stands. In the third year after fire, a change in this trend was observed, where the abundance of all groups dropped significantly, with positive changes in the diversity in zoophages, phytophages, polyphages and saprophages, which is more noticeable in sites with high severity. These results indicate that annual variation in environmental conditions triggers bottom-up cascading effects for arthropods. Forests stands severely impacted by fires support highly fluctuating and possibly unstable arthropod assemblages. Hence, restoration efforts should be focused on recovering microhabitat conditions in these stands to allow the persistence of arthropods.
Multicriteria spatial analysis applied to identifying ecosystem services in mixed-use river catchment areas in south central Chile
BackgroundThe flow of goods and services occurring in catchment areas allows the production of a series of ecosystem services. These have a direct impact on the inhabitants of the territory, who in turn recognise and value ecosystems (social value) as a function of the benefits which they generate. This has a direct impact on public policies that contribute to the development of local economies. The present study therefore sought to identify and recognize the social value of the various ecosystem services provided by a mixed-use catchment area in which different productive activities are concentrated. This study examined the social value of ecosystem services and offers qualitative or quantitative, non-monetary estimates of the relative importance of different benefits for human society derived from the functioning of ecosystems (Laterra et al, Valoracion de Servicios Ecosistemicos, Conceptos, herramientas y aplicaciones para el ordenamiento territorial, 2011). The methodology involved the participation of leading actors in the territory, and a panel of experts who defined criteria and weighting which were applied to a multicriteria spatial model. They assigned ordinal scale to the territory representing levels of appreciation based on the various ecosystem services in the ecological, productive, landscape and cultural dimensions. The results showed that the inhabitants of the territory recognise the ecosystem benefit of areas covered by native forest, in particular the species Nothofagus dombeyi (Mirb.) Oerst., in contrast to areas used for farm production. The functioning of the ecosystem is recognised, and particularly its contribution to regulating water flows and to water production and quality.ResultsThe study results showed that areas covered with secondary forest of N. dombeyi provide a variety of ecosystem functions which support the creation of ecosystem services to the population, especially in riparian areas throughout the basin where they are important for water production and quality. ES ponderations for provision, regulation and cultural showed that the native forest and riparian units (HEU 1 and HEU 6) as a very important group in relation to the ES because there are recognized by the local society (P<0.05). The leading actors assigned a low social value to other land-uses, like mixed use and farmland, because of the high degree of anthropisation of these ecosystems; this viewpoint has generated conflicts in the territory. Neither foresters nor farmers recognise or accept the impacts of their activities on the various ecosystem services provided by the territories where they operate, even though they are leading actors for the development of local economies.ConclusionThe participation of the leading actors of a territory, represented spatially in a multicriteria analysis model, highlighted the social value of the ecosystems present in a hydrographic catchment area which supports different productive and conservation activities. The model contributed to understanding of the functional processes which generate goods and services present in the physical medium. The study used a hybrid method which included definition of homogeneous environmental units and multicriteria and multivariate statistical analysis. This allowed the information provided by the actors in the territory to be analysed with different spatial scales, levels of perception and elements of territorial planning which contribute to the generation of public policies and the sustainable management and conservation of natural ecosystems.
High‐resolution melting of the cytochrome B gene in fecal DNA: A powerful approach for fox species identification of the Lycalopex genus in Chile
Easy, economic, precise species authentication is currently necessary in many areas of research and diagnosis in molecular biology applied to conservation studies of endangered species. Here, we present a new method for the identification of three fox species of the Lycalopex genus in Chile. We developed an assay based on high‐resolution melt analysis of the mitochondrial cytochrome B gene, allowing a simple, low cost, fast, and accurate species determination. To validate the assay applicability for noninvasive samples, we collected fecal samples in the Atacama Desert, finding unexpectedly one species outside of its known distribution range. We conclude that the assay has a potential to become a valuable tool for a standardized genetic monitoring of the Lycalopex species in Chile. The mitochondrial cytochrome B gene DNA barcode coupled with the high‐resolution melting method to foxes taxonomic identification of the genus Lycalopex. This technique recognized the three species of Lycalopex present in Chile.
Global effects of agriculture on fluvial dissolved organic matter
Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks and resulting in higher ecosystem productivity and CO2 outgassing.
Interannual variation in the activity patterns of kodkod (Leopardus guigna) in a peri-urban protected area of south-central Chile
The kodkod (Leopardus guigna) is a small felid dependent on forests. We studied the activity patterns of this felid during two years in a periurban protected area. We also compared its overlap with rodents and birds. During the first year, we detected it to be mainly nocturnal. In the second year, a non-significant diurnal activity was observed. During the first year overlap was higher with rodents, and lower with birds, but this reversed during the second year.
Temporal interactions among carnivores in an anthropized landscape of the coastal mountain range in southern Chile
Abstract The structuring of carnivore assemblages is based on the partitioning of niche axes, where the activity pattern is relevant for their coexistence. However, the continuous degradation of habitats, and the human presence (and exotic species) limit the availability of resources. Therefore, these species must readjust their requirements to minimize interactions derived from competition. For two years, activity patterns of two native carnivores (the cougar Puma concolor and the chilla fox Lycalopex griseus ), one exotic carnivore (the domestic dog Canis lupus familiaris ) and people were evaluated in an anthropogenic landscape in southern Chile. A differentiation was observed in the circadian cycle of the species, where the fox was predominantly nocturnal, while the cougar maintained a random activity pattern, in contrast to the dog and humans, which were the most diurnal. The ecological implications derived from the observed patterns are discussed, mainly in relation to the interference exerted by the exotic species.
An Overview of the Environmental Impact Assessment of Mining Projects in Chile
In accordance with the Sustainable Development Goals of the United Nations, the Environmental Impact Assessment (EIA) is the main management tool used to identify and prevent the impact of productive activities on the environment and human health and promote compensation measures. Metallic mining is the main productive sector in Chile. In 2021, Chile was the highest global producer of copper, the second-highest producer of molybdenum, and the third-highest producer of silver. Other types of non-metallic mining, such as siliceous aggregates, iodine, and hydrocarbons, are also notable. Mining activity requires robust and flexible environmental legislation. This paper analyzes the performance of the Chilean EIA system regarding mining projects entered into the system as Environmental Impact Declarations (EIDs) for low-incident projects and Environmental Impact Studies (EISs) for high-incident projects. The 2867 mining projects submitted to the Chilean EIA system as EIDs (91.8%) and EISs (8.2%) between 1994 and 2019 were compiled. For a proper performance evaluation, a representative sample of 68 projects (61 EID and 7 EIS) was studied through a principal coordinate analysis using eleven indicators widely used in the EIA scientific literature. The results do not show significant differences between the EID and EIS projects or remarkable differences regarding the increasing restrictions introduced by the successive regulatory periods SD30, SD95, and SD40. Based on the observed weaknesses, four opportunities for improvement are proposed focused on creating a simplified sanctioning procedure, upgrading the form of delivery of the project monitoring information, early citizen participation, and incorporating the climate change variable into the projects. This paper extends the methodology introduced in previous papers to evaluate the performance of the Chilean EIA system in mining projects, seeking also to offer a feasible methodology to other countries with a similar socio-economic context or other productive sectors potentially impacted by the degradation of land and renewable natural resources.
Composting as an Alternative for the Treatment of Solid Waste from the Kraft Pulp Industry
The increasing industrial pulp production has led to a negative growth of the associated solid wastes, thus making necessary alternative ways of handling them in suitable sanitary landfills to minimize adverse effects on the environment and well-being of people. Solid waste treatment prior to its disposal is a target to minimize pollution of the natural resources (air, soil, water) due to accidental leaching. This paper aims to determine better experimental conditions in the container to develop an optimal composting design for pulp solid wastes. For this, an experimental methodology is introduced. This paper presents the results about the influence of independent control variables (grits addition and composting process time) on dependent variables (chemical and biological), for which a composting design was used, and a face-centered central composite factor was applied. The results showed mature compost over 60-day treatment, with the following experimental observations (i) the grits addition did not decrease the pH in the first stage of the composting process; and (ii) the microbial activities were high during the active stage of the composting progress and evolved to stable, lower values together with a proper trend of N–NH4+ and N–NO3− at the end. Grits addition of around 6% is the optimal experimental amount to use for the composting process of the secondary sludge from the Kraft mill industry. In conclusion, treating secondary sludges and grit residues from the Kraft mill industry to produce compost is feasible and sustainable. This action reduces the environmental pollution risk (evidenced by soil pH change and possible water pollution) and improves the soil assimilation capability of inorganic micronutrients and organic compounds after application. Thus, the controlled waste reuse will pass from a negative input to the environment to a positive, sustainable solution, which can be used as a soil-nutrient improver in agriculture.
Effects of vegetation strata and human disturbance on bird diversity in green areas in a city in southern Chile
Background Urbanisation is a dominant geographical trend and an important component of global change, with unprecedented implications for socio-economic, cultural and environmental characteristics. However, green areas, including original fragments, can help to conserve native diversity, improving the functioning of these artificial systems in the long term. Urban areas can still provide habitats usable by wild birds, however the structural characteristics of the habitat formed by different types of green area differ, and therefore dissimilar bird diversities are to be expected. The object of this study was to characterise the α and β diversities of birds in different green areas and to analyse how diversity relates to ten variables that characterise the habitat. Methods We studied the green areas in the city of Temuco, southern Chile (Park, Square and Median strips of main streets), evaluating the variables: (a) surface area, (b) vegetation, (c) estimated human impact as the proportions of vegetation and bare soil by area, and the vehicle traffic. The bird assemblage structures were characterised by α (intra-environment) diversity and β diversity (between environments) and the statistical analysis identified the environmental variables related with the presence and abundance of birds. A statistical model was constructed to describe the contribution of the variables to bird diversity. Results We found significant differences between the diversity of bird species in the three types of green area. The β showed medium to high similarity between the different study units. There was a negative correlation with bare soil areas; the correlations with vehicle flow, plant structure and tree and shrub cover were not significant, meaning that these variables did not explain the variation in the richness of bird species between the green areas. However the surface area did explain this variation presenting a positive potential relation. There was also a high correlation with the origin (native) of shrub species. Conclusions The bird diversity varied significantly according to the type of urban green area. The environmental variables presenting significant correlations with bird diversity were: surface area, native species of shrub stratum, shrub cover, and bare soil area. The best multiple regression model showed that the three most important variables for bird diversity are the surface area of the green area, the cover of the shrub stratum and the presence of native shrub species.
Effects on enzyme activity and DNA integrity in rainbow trout Oncorhynchus mykiss exposed to fish farm effluents
Fish farm effluents are known to affect water quality and freshwater ecosystems, potentially harming non-target organisms and ecosystem processes. We studied the effect of fish farm effluents at different concentrations (3.125-100% v/v) on catalase (CAT) and glutathione S -transferase (GST) activity as well as the DNA integrity of Oncorhynchus mykiss fry over 24-120 h. Biochemical responses and DNA damage analysis were conducted to assess the impact. We found that fish farm effluent had higher conductivity, nitrate, nitrite, and total dissolved solids concentrations downstream compared to upstream of the farm. Interestingly, no antibiotics were detected in the effluent. CAT activity significantly increased in the fish liver at concentrations of 12.5, 50, and 100% of the effluent after 72 h. In the gills, a significant increase was observed at concentrations ranging from 6.25 to 100% of the effluent after both 24 and 72 h. GST activity increased significantly in the liver at a concentration of 100% of the effluent after 72 h and in the gills at concentrations of 25, 50, and 100% after 24 h, with a decrease noted at higher concentrations. DNA damage assessment revealed significant DNA strand breaks in blood cells at concentrations of 12.5, 25, 50, and 100% of the effluent after 120 h of exposure. The results demonstrate that fish farm effluents can induce oxidative stress, causing damage to DNA integrity in blood cells. Our findings emphasize the potential ecological risks posed by fish farm effluents to aquatic organisms.