Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
160 result(s) for "Eng, Alexander"
Sort by:
Taxa-function robustness in microbial communities
Background The species composition of a microbial community is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies. These perturbations to a community’s taxonomic profile naturally also alter the community’s functional profile–the aggregate set of genes encoded by community members–ultimately altering the community’s overall functional capacities. The magnitude of such functional changes and the specific shift that will occur in each function, however, are strongly dependent on how genes are distributed across community members’ genomes. This gene distribution, in turn, is determined by the taxonomic composition of the community and would markedly differ, for example, between communities composed of species with similar genomic content vs. communities composed of species whose genomes encode relatively distinct gene sets. Combined, these observations suggest that community functional robustness to taxonomic perturbations could vary widely across communities with different compositions, yet, to date, a systematic study of the inherent link between community composition and robustness is lacking. Results In this study, we examined how a community’s taxonomic composition influences the robustness of that community’s functional profile to taxonomic perturbation (here termed taxa-function robustness ) across a wide array of environments. Using a novel simulation-based computational model to quantify this taxa-function robustness in host-associated and non-host-associated communities, we find notable differences in robustness between communities inhabiting different body sites, including significantly higher robustness in gut communities compared to vaginal communities that cannot be attributed solely to differences in species richness. We additionally find between-site differences in the robustness of specific functions, some of which are potentially related to site-specific environmental conditions. These taxa-function robustness differences are most strongly associated with differences in overall functional redundancy, though other aspects of gene distribution also influence taxa-function robustness in certain body environments, and are sufficient to cluster communities by environment. Further analysis revealed a correspondence between our robustness estimates and taxonomic and functional shifts observed across human-associated communities. Conclusions Our analysis approach revealed intriguing taxa-function robustness variation across environments and identified features of community and gene distribution that impact robustness. This approach could be further applied for estimating taxa-function robustness in novel communities and for informing the design of synthetic communities with specific robustness requirements.
MetaLAFFA: a flexible, end-to-end, distributed computing-compatible metagenomic functional annotation pipeline
Background Microbial communities have become an important subject of research across multiple disciplines in recent years. These communities are often examined via shotgun metagenomic sequencing, a technology which can offer unique insights into the genomic content of a microbial community. Functional annotation of shotgun metagenomic data has become an increasingly popular method for identifying the aggregate functional capacities encoded by the community’s constituent microbes. Currently available metagenomic functional annotation pipelines, however, suffer from several shortcomings, including limited pipeline customization options, lack of standard raw sequence data pre-processing, and insufficient capabilities for integration with distributed computing systems. Results Here we introduce MetaLAFFA, a functional annotation pipeline designed to take unfiltered shotgun metagenomic data as input and generate functional profiles. MetaLAFFA is implemented as a Snakemake pipeline, which enables convenient integration with distributed computing clusters, allowing users to take full advantage of available computing resources. Default pipeline settings allow new users to run MetaLAFFA according to common practices while a Python module-based configuration system provides advanced users with a flexible interface for pipeline customization. MetaLAFFA also generates summary statistics for each step in the pipeline so that users can better understand pre-processing and annotation quality. Conclusions MetaLAFFA is a new end-to-end metagenomic functional annotation pipeline with distributed computing compatibility and flexible customization options. MetaLAFFA source code is available at https://github.com/borenstein-lab/MetaLAFFA and can be installed via Conda as described in the accompanying documentation.
Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation
Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism. Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. IMPORTANCE Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism.
Microbiome sharing between children, livestock and household surfaces in western Kenya
The gut microbiome community structure and development are associated with several health outcomes in young children. To determine the household influences of gut microbiome structure, we assessed microbial sharing within households in western Kenya by sequencing 16S rRNA libraries of fecal samples from children and cattle, cloacal swabs from chickens, and swabs of household surfaces. Among the 156 households studied, children within the same household significantly shared their gut microbiome with each other, although we did not find significant sharing of gut microbiome across host species or household surfaces. Higher gut microbiome diversity among children was associated with lower wealth status and involvement in livestock feeding chores. Although more research is necessary to identify further drivers of microbiota development, these results suggest that the household should be considered as a unit. Livestock activities, health and microbiome perturbations among an individual child may have implications for other children in the household.
Infants with cystic fibrosis have altered fecal functional capacities with potential clinical and metabolic consequences
Background Infants with cystic fibrosis (CF) suffer from gastrointestinal (GI) complications, including pancreatic insufficiency and intestinal inflammation, which have been associated with impaired nutrition and growth. Recent evidence identified altered fecal microbiota taxonomic compositions in infants with CF relative to healthy infants that were characterized by differences in the abundances of taxa associated with GI health and nutrition. Furthermore, these taxonomic differences were more pronounced in low length infants with CF, suggesting a potential link to linear growth failure. We hypothesized that these differences would entail shifts in the microbiome’s functional capacities that could contribute to inflammation and nutritional failure in infants with CF. Results To test this hypothesis, we compared fecal microbial metagenomic content between healthy infants and infants with CF, supplemented with an analysis of fecal metabolomes in infants with CF. We identified notable differences in CF fecal microbial functional capacities, including metabolic and environmental response functions, compared to healthy infants that intensified during the first year of life. A machine learning-based longitudinal metagenomic age analysis of healthy and CF fecal metagenomic functional profiles further demonstrated that these differences are characterized by a CF-associated delay in the development of these functional capacities. Moreover, we found metagenomic differences in functions related to metabolism among infants with CF that were associated with diet and antibiotic exposure, and identified several taxa as potential drivers of these functional differences. An integrated metagenomic and metabolomic analysis further revealed that abundances of several fecal GI metabolites important for nutrient absorption, including three bile acids, correlated with specific microbes in infants with CF. Conclusions Our results highlight several metagenomic and metabolomic factors, including bile acids and other microbial metabolites, that may impact nutrition, growth, and GI health in infants with CF. These factors could serve as promising avenues for novel microbiome-based therapeutics to improve health outcomes in these infants.
xenoGI: reconstructing the history of genomic island insertions in clades of closely related bacteria
Background Genomic islands play an important role in microbial genome evolution, providing a mechanism for strains to adapt to new ecological conditions. A variety of computational methods, both genome-composition based and comparative, have been developed to identify them. Some of these methods are explicitly designed to work in single strains, while others make use of multiple strains. In general, existing methods do not identify islands in the context of the phylogeny in which they evolved. Even multiple strain approaches are best suited to identifying genomic islands that are present in one strain but absent in others. They do not automatically recognize islands which are shared between some strains in the clade or determine the branch on which these islands inserted within the phylogenetic tree. Results We have developed a software package, xenoGI, that identifies genomic islands and maps their origin within a clade of closely related bacteria, determining which branch they inserted on. It takes as input a set of sequenced genomes and a tree specifying their phylogenetic relationships. Making heavy use of synteny information, the package builds gene families in a species-tree-aware way, and then attempts to combine into islands those families whose members are adjacent and whose most recent common ancestor is shared. The package provides a variety of text-based analysis functions, as well as the ability to export genomic islands into formats suitable for viewing in a genome browser. We demonstrate the capabilities of the package with several examples from enteric bacteria, including an examination of the evolution of the acid fitness island in the genus Escherichia . In addition we use output from simulations and a set of known genomic islands from the literature to show that xenoGI can accurately identify genomic islands and place them on a phylogenetic tree. Conclusions xenoGI is an effective tool for studying the history of genomic island insertions in a clade of microbes. It identifies genomic islands, and determines which branch they inserted on within the phylogenetic tree for the clade. Such information is valuable because it helps us understand the adaptive path that has produced living species.
People treat social robots as real social agents
When people interact with social robots, they treat them as real social agents. How people depict robots is fun to consider, but when people are confronted with embodied entities that move and talk – whether humans or robots – they interact with them as authentic social agents with minds, and not as mere representations.
PK10453, a nonselective platelet-derived growth factor receptor inhibitor, prevents the progression of pulmonary arterial hypertension
The platelet-derived growth factor (PDGF) signaling pathway has been found to be activated in human pulmonary arterial hypertension (PAH) and in animal models of the disease. Our study tested the hypothesis that a novel, nonselective inhaled PDGF receptor inhibitor, PK10453, would decrease pulmonary hypertension both in the rat monocrotaline (MCT) model and the rat MCT plus pneumonectomy (MCT+PN) model of PAH. PK10453, delivered by inhalation for 4 (D4)- and 8 (D8)-minute exposures 3 times a day for 2 weeks, decreased right ventricular systolic pressure (RVSP) in both the rat MCT and rat MCT+PN models: RVSP was 80.4 ± 2.6 mmHg in the vehicle MCT group (n = 6), 44.4 ± 5.8 mmHg in the D4 MCT group (n = 6), and 37.1 ± 4.5 mmHg in the D8 MCT group (n = 5; P < 0.001 vs. vehicle); RVSP was 75.7 ± 7.1 mmHg in the vehicle MCT+PN group (n = 9), 40.4 ± 2.7 mmHg in the D4 MCT+PN group (n = 10), and 43.0 ± 3.0 mmHg in the D8 MCT+PN group (n = 8; P < 0.001). In the rat MCT+PN model, continuous telemetry monitoring of pulmonary artery pressures also demonstrated that PK10453 prevented the progression of PAH. Imatinib given by inhalation was equally effective in the MCT model but was not effective in the MCT+PN model. Immunohistochemistry demonstrated increased activation of the PDGFβ receptor compared to the PDGFα receptor in neointimal and perivascular lesions found in the MCT+PN model. We show that imatinib is selective for the PDGFα receptor, whereas PK10453 has a lower half-maximal inhibitor concentration (IC50) for inhibition of kinase activity of both the PDGFα and PDGFβ receptors compared to imatinib. In conclusion, PK10453, when delivered by inhalation, significantly decreased the progression of PAH in the rat MCT and MCT+PN models. Nonselective inhibition of both the PDGFα and PDGFβ receptors may have a therapeutic advantage over selective PDGFα receptor inhibition in PAH.
The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy
The gut microbiota has been linked to various neurological disorders via the gut–brain axis. Diet influences the composition of the gut microbiota. The ketogenic diet (KD) is a high-fat, adequate-protein, low-carbohydrate diet established for treatment of therapy-resistant epilepsy in children. Its efficacy in reducing seizures has been confirmed, but the mechanisms remain elusive. The diet has also shown positive effects in a wide range of other diseases, including Alzheimer’s, depression, autism, cancer, and type 2 diabetes. We collected fecal samples from 12 children with therapy-resistant epilepsy before starting KD and after 3 months on the diet. Parents did not start KD and served as diet controls. Applying shotgun metagenomic DNA sequencing, both taxonomic and functional profiles were established. Here we report that alpha diversity is not changed significantly during the diet, but differences in both taxonomic and functional composition are detected. Relative abundance of bifidobacteria as well as E. rectale and Dialister is significantly diminished during the intervention. An increase in relative abundance of E. coli is observed on KD. Functional analysis revealed changes in 29 SEED subsystems including the reduction of seven pathways involved in carbohydrate metabolism. Decomposition of these shifts indicates that bifidobacteria and Escherichia are important contributors to the observed functional shifts. As relative abundance of health-promoting, fiber-consuming bacteria becomes less abundant during KD, we raise concern about the effects of the diet on the gut microbiota and overall health. Further studies need to investigate whether these changes are necessary for the therapeutic effect of KD.Gut–brain axis: The ketogenic diet alters functional gut microbiotaThe ketogenic diet changes both the relative abundance of gut microbiota and their metabolic activities. The diet forces a shift from carbohydrates to ketones as a primary energy source and has demonstrated efficacy in reducing epileptic seizures in children. After animal models implicated gut microbiota in this amelioration, Stefanie Prast-Nielsen, of Sweden’s Karolinska Institutet, and her team sequenced microbiotic DNA of fecal samples from 12 children with epilepsy before and after 3 months on a ketogenic diet. Changes included reductions in the numbers of Bifidobacterium and an increase in Escherichia coli. Carbohydrate metabolism significantly changed after 3 months on the diet. Some reductions raise questions about the diet’s potential impact on gut and overall health. More studies are also needed to discern the mechanistic impact of these changes on seizure activity.
Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure
Most infants with cystic fibrosis (CF) have pancreatic exocrine insufficiency that results in nutrient malabsorption and requires oral pancreatic enzyme replacement. Newborn screening for CF has enabled earlier diagnosis, nutritional intervention and enzyme replacement for these infants, allowing most infants with CF to achieve their weight goals by 12 months of age 1 . Nevertheless, most infants with CF continue to have poor linear growth during their first year of life 1 . Although this early linear growth failure is associated with worse long-term respiratory function and survival 2 , 3 , the determinants of body length in infants with CF have not been defined. Several characteristics of the CF gastrointestinal (GI) tract, including inflammation, maldigestion and malabsorption, may promote intestinal dysbiosis 4 , 5 . As GI microbiome activities are known to affect endocrine functions 6 , 7 , the intestinal microbiome of infants with CF may also impact growth. We identified an early, progressive fecal dysbiosis that distinguished infants with CF and low length from infants with CF and normal length. This dysbiosis included altered abundances of taxa that perform functions that are important for GI health, nutrient harvest and growth hormone signaling, including decreased abundance of Bacteroidetes and increased abundance of Proteobacteria. Thus, the GI microbiota represent a potential therapeutic target for the correction of low linear growth in infants with CF. Most infants with cystic fibrosis have poor early linear growth in their first year despite nutritional supplementation and treatment. Intestinal dysbiosis in these infants is associated with low length, suggesting a path for intervention.