Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
25
result(s) for
"Engø-Monsen, Kenth"
Sort by:
Incorporating human mobility data improves forecasts of Dengue fever in Thailand
2021
Over 390 million people worldwide are infected with dengue fever each year. In the absence of an effective vaccine for general use, national control programs must rely on hospital readiness and targeted vector control to prepare for epidemics, so accurate forecasting remains an important goal. Many dengue forecasting approaches have used environmental data linked to mosquito ecology to predict when epidemics will occur, but these have had mixed results. Conversely, human mobility, an important driver in the spatial spread of infection, is often ignored. Here we compare time-series forecasts of dengue fever in Thailand, integrating epidemiological data with mobility models generated from mobile phone data. We show that geographically-distant provinces strongly connected by human travel have more highly correlated dengue incidence than weakly connected provinces of the same distance, and that incorporating mobility data improves traditional time-series forecasting approaches. Notably, no single model or class of model always outperformed others. We propose an adaptive, mosaic forecasting approach for early warning systems.
Journal Article
Impact of human mobility on the emergence of dengue epidemics in Pakistan
by
Johansson, Michael A.
,
Boni, Maciej F.
,
Wesolowski, Amy
in
Biological Sciences
,
Cell Phone
,
Climate change
2015
The recent emergence of dengue viruses into new susceptible human populations throughout Asia and the Middle East, driven in part by human travel on both local and global scales, represents a significant global health risk, particularly in areas with changing climatic suitability for the mosquito vector. In Pakistan, dengue has been endemic for decades in the southern port city of Karachi, but large epidemics in the northeast have emerged only since 2011. Pakistan is therefore representative of many countries on the verge of countrywide endemic dengue transmission, where prevention, surveillance, and preparedness are key priorities in previously dengue-free regions. We analyze spatially explicit dengue case data from a large outbreak in Pakistan in 2013 and compare the dynamics of the epidemic to an epidemiological model of dengue virus transmission based on climate and mobility data from ∼40 million mobile phone subscribers. We find that mobile phone-based mobility estimates predict the geographic spread and timing of epidemics in both recently epidemic and emerging locations. We combine transmission suitability maps with estimates of seasonal dengue virus importation to generate fine-scale dynamic risk maps with direct application to dengue containment and epidemic preparedness.
Journal Article
Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data
by
Metcalf, C. J. E.
,
Wesolowski, Amy
,
Buckee, Caroline O.
in
Big Data for Infectious Disease Surveillance and Modeling
,
Cell Phone
,
Communicable Diseases - epidemiology
2016
Human travel can shape infectious disease dynamics by introducing pathogens into susceptible populations or by changing the frequency of contacts between infected and susceptible individuals. Quantifying infectious disease–relevant travel patterns on fine spatial and temporal scales has historically been limited by data availability. The recent emergence of mobile phone calling data and associated locational information means that we can now trace fine scale movement across large numbers of individuals. However, these data necessarily reflect a biased sample of individuals across communities and are generally aggregated for both ethical and pragmatic reasons that may further obscure the nuance of individual and spatial heterogeneities. Additionally, as a general rule, the mobile phone data are not linked to demographic or social identifiers, or to information about the disease status of individual subscribers (although these may be made available in smaller-scale specific cases). Combining data on human movement from mobile phone data–derived population fluxes with data on disease incidence requires approaches that can tackle varying spatial and temporal resolutions of each data source and generate inference about dynamics on scales relevant to both pathogen biology and human ecology. Here, we review the opportunities and challenges of these novel data streams, illustrating our examples with analyses of 2 different pathogens in Kenya, and conclude by outlining core directions for future research.
Journal Article
Understanding tie strength in social networks using a local “bow tie” framework
by
Mattie, Heather
,
Onnela, Jukka-Pekka
,
Engø-Monsen, Kenth
in
639/705/1042
,
639/705/531
,
Cellular telephones
2018
Understanding factors associated with tie strength in social networks is essential in a wide variety of settings. With the internet and cellular phones providing additional avenues of communication, measuring and inferring tie strength has become much more complex. We introduce the social bow tie framework, which consists of a focal tie and all actors connected to either or both of the two focal nodes on either side of the focal tie. We also define several intuitive and interpretable metrics that quantify properties of the bow tie which enable us to investigate associations between the strength of the “central” tie and properties of the bow tie. We combine the bow tie framework with machine learning to investigate what aspects of the bow tie are most predictive of tie strength in two very different types of social networks, a collection of medium-sized social networks from 75 rural villages in India and a nationwide call network of European mobile phone users. Our results show that tie strength depends not only on the properties of shared friends, but also on non-shared friends, those observable to only one person in the tie, hence introducing a fundamental asymmetry to social interaction.
Journal Article
Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics
by
Lourenço, Christopher
,
Metcalf, C. J. E.
,
Wesolowski, Amy
in
631/158/1469
,
704/158/1144
,
704/844
2017
Seasonal variation in human mobility is globally ubiquitous and affects the spatial spread of infectious diseases, but the ability to measure seasonality in human movement has been limited by data availability. Here, we use mobile phone data to quantify seasonal travel and directional asymmetries in Kenya, Namibia, and Pakistan, across a spectrum from rural nomadic populations to highly urbanized communities. We then model how the geographic spread of several acute pathogens with varying life histories could depend on country-wide connectivity fluctuations through the year. In all three countries, major national holidays are associated with shifts in the scope of travel. Within this broader pattern, the relative importance of particular routes also fluctuates over the course of the year, with increased travel from rural to urban communities after national holidays, for example. These changes in travel impact how fast communities are likely to be reached by an introduced pathogen.
Fine scale mobile phone data is improving capacity to understand seasonal patterns in human movement. Here, the authors use multi-year movement data across three nations, as well as a model of pathogen spread, to understand the consequences of seasonal travel for disease dynamics.
Journal Article
Low parasite connectivity among three malaria hotspots in Thailand
by
Chang, Hsiao-Han
,
Chang, Meng-Chun
,
Buckee, Caroline O.
in
631/114
,
692/699/255/1629
,
Cell Phone - statistics & numerical data
2021
Identifying sources and sinks of malaria transmission is critical for designing effective intervention strategies particularly as countries approach elimination. The number of malaria cases in Thailand decreased 90% between 2012 and 2020, yet elimination has remained a major public health challenge with persistent transmission foci and ongoing importation. There are three main hotspots of malaria transmission in Thailand: Ubon Ratchathani and Sisaket in the Northeast; Tak in the West; and Yala in the South. However, the degree to which these hotspots are connected via travel and importation has not been well characterized. Here, we develop a metapopulation model parameterized by mobile phone call detail record data to estimate parasite flow among these regions. We show that parasite connectivity among these regions was limited, and that each of these provinces independently drove the malaria transmission in nearby provinces. Overall, our results suggest that due to the low probability of domestic importation between the transmission hotspots, control and elimination strategies can be considered separately for each region.
Journal Article
Reconstructing unseen transmission events to infer dengue dynamics from viral sequences
by
Cummings, Derek A. T.
,
Ruchusatsawat, Kriangsak
,
Suntarattiwong, Piyarat
in
631/114/2397
,
631/208/457
,
631/326/596/1413
2021
For most pathogens, transmission is driven by interactions between the behaviours of infectious individuals, the behaviours of the wider population, the local environment, and immunity. Phylogeographic approaches are currently unable to disentangle the relative effects of these competing factors. We develop a spatiotemporally structured phylogenetic framework that addresses these limitations by considering individual transmission events, reconstructed across spatial scales. We apply it to geocoded dengue virus sequences from Thailand (N = 726 over 18 years). We find infected individuals spend 96% of their time in their home community compared to 76% for the susceptible population (mainly children) and 42% for adults. Dynamic pockets of local immunity make transmission more likely in places with high heterotypic immunity and less likely where high homotypic immunity exists. Age-dependent mixing of individuals and vector distributions are not important in determining spread. This approach provides previously unknown insights into one of the most complex disease systems known and will be applicable to other pathogens.
Phylogeographic analyses can provide broad descriptions of the spread of pathogens between populations, but are limited by incomplete sampling. Here, the authors develop an inference framework that reconstructs sequential transmission events and use it to characterise dynamics of dengue in Thailand.
Journal Article
A real-time regional model for COVID-19: Probabilistic situational awareness and forecasting
by
Rø, Gunnar
,
Kristoffersen, Anja Bråthen
,
Frigessi, Arnoldo
in
Awareness
,
Bayes Theorem
,
Bayesian analysis
2023
The COVID-19 pandemic is challenging nations with devastating health and economic consequences. The spread of the disease has revealed major geographical heterogeneity because of regionally varying individual behaviour and mobility patterns, unequal meteorological conditions, diverse viral variants, and locally implemented non-pharmaceutical interventions and vaccination roll-out. To support national and regional authorities in surveilling and controlling the pandemic in real-time as it unfolds, we here develop a new regional mathematical and statistical model. The model, which has been in use in Norway during the first two years of the pandemic, is informed by real-time mobility estimates from mobile phone data and laboratory-confirmed case and hospitalisation incidence. To estimate regional and time-varying transmissibility, case detection probabilities, and missed imported cases, we developed a novel sequential Approximate Bayesian Computation method allowing inference in useful time, despite the high parametric dimension. We test our approach on Norway and find that three-week-ahead predictions are precise and well-calibrated, enabling policy-relevant situational awareness at a local scale. By comparing the reproduction numbers before and after lockdowns, we identify spatially heterogeneous patterns in their effect on the transmissibility, with a stronger effect in the most populated regions compared to the national reduction estimated to be 85% (95% CI 78%-89%). Our approach is the first regional changepoint stochastic metapopulation model capable of real time spatially refined surveillance and forecasting during emergencies.
Journal Article
A theoretical single-parameter model for urbanisation to study infectious disease spread and interventions
by
Freiesleben de Blasio, Birgitte
,
Engebretsen, Solveig
,
Engø-Monsen, Kenth
in
Algorithms
,
Biology and Life Sciences
,
Cluster Analysis
2019
The world is continuously urbanising, resulting in clusters of densely populated urban areas and more sparsely populated rural areas. We propose a method for generating spatial fields with controllable levels of clustering of the population. We build a synthetic country, and use this method to generate versions of the country with different clustering levels. Combined with a metapopulation model for infectious disease spread, this allows us to in silico explore how urbanisation affects infectious disease spread. In a baseline scenario with no interventions, the underlying population clustering seems to have little effect on the final size and timing of the epidemic. Under within-country restrictions on non-commuting travel, the final size decreases with increased population clustering. The effect of travel restrictions on reducing the final size is larger with higher clustering. The reduction is larger in the more rural areas. Within-country travel restrictions delay the epidemic, and the delay is largest for lower clustering levels. We implemented three different vaccination strategies-uniform vaccination (in space), preferentially vaccinating urban locations and preferentially vaccinating rural locations. The urban and uniform vaccination strategies were most effective in reducing the final size, while the rural vaccination strategy was clearly inferior. Visual inspection of some European countries shows that many countries already have high population clustering. In the future, they will likely become even more clustered. Hence, according to our model, within-country travel restrictions are likely to be less and less effective in delaying epidemics, while they will be more effective in decreasing final sizes. In addition, to minimise final sizes, it is important not to neglect urban locations when distributing vaccines. To our knowledge, this is the first study to systematically investigate the effect of urbanisation on infectious disease spread and in particular, to examine effectiveness of prevention measures as a function of urbanisation.
Journal Article
Megacities as drivers of national outbreaks: The 2017 chikungunya outbreak in Dhaka, Bangladesh
by
Buckee, Caroline O.
,
Tahmina, Sania
,
Kabir, Md. Iqbal
in
Bangladesh - epidemiology
,
Biology and life sciences
,
Causes of
2021
Several large outbreaks of chikungunya have been reported in the Indian Ocean region in the last decade. In 2017, an outbreak occurred in Dhaka, Bangladesh, one of the largest and densest megacities in the world. Population mobility and fluctuations in population density are important drivers of epidemics. Measuring population mobility during outbreaks is challenging but is a particularly important goal in the context of rapidly growing and highly connected cities in low- and middle-income countries, which can act to amplify and spread local epidemics nationally and internationally.
We first describe the epidemiology of the 2017 chikungunya outbreak in Dhaka and estimate incidence using a mechanistic model of chikungunya transmission parametrized with epidemiological data from a household survey. We combine the modeled dynamics of chikungunya in Dhaka, with mobility estimates derived from mobile phone data for over 4 million subscribers, to understand the role of population mobility on the spatial spread of chikungunya within and outside Dhaka during the 2017 outbreak.
We estimate a much higher incidence of chikungunya in Dhaka than suggested by official case counts. Vector abundance, local demographics, and population mobility were associated with spatial heterogeneities in incidence in Dhaka. The peak of the outbreak in Dhaka coincided with the annual Eid holidays, during which large numbers of people traveled from Dhaka to other parts of the country. We show that travel during Eid likely resulted in the spread of the infection to the rest of the country.
Our results highlight the impact of large-scale population movements, for example during holidays, on the spread of infectious diseases. These dynamics are difficult to capture using traditional approaches, and we compare our results to a standard diffusion model, to highlight the value of real-time data from mobile phones for outbreak analysis, forecasting, and surveillance.
Journal Article