Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Enshaeifar, Shirin"
Sort by:
IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services
With the proliferation of sensors and IoT technologies, stream data are increasingly stored and analysed, but rarely combined, due to the heterogeneity of sources and technologies. Semantics are increasingly used to share sensory data, but not so much for annotating stream data. Semantic models for stream annotation are scarce, as generally, semantics are heavy to process and not ideal for Internet of Things (IoT) environments, where the data are frequently updated. We present a light model to semantically annotate streams, IoT-Stream. It takes advantage of common knowledge sharing of the semantics, but keeping the inferences and queries simple. Furthermore, we present a system architecture to demonstrate the adoption the semantic model, and provide examples of instantiation of the system for different use cases. The system architecture is based on commonly used architectures in the field of IoT, such as web services, microservices and middleware. Our system approach includes the semantic annotations that take place in the pipeline of IoT services and sensory data analytics. It includes modules needed to annotate, consume, and query data annotated with IoT-Stream. In addition to this, we present tools that could be used in conjunction to the IoT-Stream model and facilitate the use of semantics in IoT.
Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia
Dementia is a neurological and cognitive condition that affects millions of people around the world. At any given time in the United Kingdom, 1 in 4 hospital beds are occupied by a person with dementia, while about 22% of these hospital admissions are due to preventable causes. In this paper we discuss using Internet of Things (IoT) technologies and in-home sensory devices in combination with machine learning techniques to monitor health and well-being of people with dementia. This will allow us to provide more effective and preventative care and reduce preventable hospital admissions. One of the unique aspects of this work is combining environmental data with physiological data collected via low cost in-home sensory devices to extract actionable information regarding the health and well-being of people with dementia in their own home environment. We have worked with clinicians to design our machine learning algorithms where we focused on developing solutions for real-world settings. In our solutions, we avoid generating too many alerts/alarms to prevent increasing the monitoring and support workload. We have designed an algorithm to detect Urinary Tract Infections (UTI) which is one of the top five reasons of hospital admissions for people with dementia (around 9% of hospital admissions for people with dementia in the UK). To develop the UTI detection algorithm, we have used a Non-negative Matrix Factorisation (NMF) technique to extract latent factors from raw observation and use them for clustering and identifying the possible UTI cases. In addition, we have designed an algorithm for detecting changes in activity patterns to identify early symptoms of cognitive decline or health decline in order to provide personalised and preventative care services. For this purpose, we have used an Isolation Forest (iForest) technique to create a holistic view of the daily activity patterns. This paper describes the algorithms and discusses the evaluation of the work using a large set of real-world data collected from a trial with people with dementia and their caregivers.
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.
Transforming care for people with dementia using the Internet of Things
There are currently around 46.8 million people living with dementia around the world and this number is estimated to increase to 74.7 million by 2030 and to 131.5 million by 2050. Currently there is no definite cure for dementia and the cost of care for this condition is around £26 billion a year in the UK and soring dramatically. Being able to slow the decline and maintain independent living are very important goals for supporting people with dementia. At any given time in the United Kingdom, 1 in 4 hospital beds are occupied by a person with dementia, while about 22% of these hospital admissions are due to preventable causes. In this paper, we discuss the TIHM (Technology Integrated Health Management) for dementia study, which uses Internet of Things (IoT) technologies and in-home sensory devices and monitors in combination with machine learning techniques to remotely monitor the health and well-being of people with dementia. This will allow us to provide more effective and preventative care and reduce preventable hospital admissions. One of the unique aspects of this work is combining environmental data with physiological data collected via low cost in-home sensory devices and monitors to extract actionable information regarding the health and well-being of people with dementia in their own home environment. In this presentation, we collected data and on how machine learning algorithms have been used to detect different conditions such as Urinary Tract Infections (UTIs) and Agitation, Irritability and Aggression (AIA) in this group of people. The current model of care for people with dementia is heavily reliant on paid carers visiting people with dementia on a regular basis. The frequency of these visits is based on an initial assessment by Social Services.  But the needs  of  a person with dementia can change suddenly and these changes can be missed by a carer, visiting for only short periods of time, perhaps only once a day. As a result, the person with dementia may not receive the support that is needed quickly enough and this can lead to hospital or even care home admission. TIHM for dementia continuously collects and analyses data about a person’s vital signs, their patterns of behaviour, and movement inside and outside of the home, and also environment. If the technology identifies an issue, an alert is triggered on a digital dashboard and followed up by a Clinical Monitoring Team. TIHM offers a new way of providing timely care for this group of people that is adaptable and based on their needs.
Eigen-Based Machine Learning Techniques for Complex and Hyper-Complex Processing
One of the earlier works on eigen-based techniques for the hyper-complex domain of quaternions was on \"quaternion principal component analysis of colour images\". The results of this work are still instructive in many aspects. First, it showed how naturally the quaternion domain accounts for the coupling between the dimensions of red, blue and green of an image, hence its suitability for multichannel processing. Second, it was clear that there was a lack of eigen-based techniques for such a domain, which explains the non-trivial gap in the literature. Third, the lack of such eigen-based quaternion tools meant that the scope and the applications of quaternion signal processing were quite limited, especially in the field of biomedicine. And fourth, quaternion principal component analysis made use of complex matrix algebra, which reminds us that the complex domain lays the building blocks of the quaternion domain, and therefore any research endeavour in quaternion signal processing should start with the complex domain. As such, the first contribution of this thesis lies in the proposition of complex singular spectrum analysis. That research provided a deep understanding and an appreciation of the intricacies of the complex domain and its impact on the quaternion domain. As the complex domain offers one degree of freedom over the real domain, the statistics of a complex variable x has to be augmented with its complex conjugate x*, which led to the term augmented statistics. This recent advancement in complex statistics was exploited in the proposed complex singular spectrum analysis. The same statistical notion was used in proposing novel quaternion eigen-based techniques such as the quaternion singular spectrum analysis, the quaternion uncorrelating transform, and the quaternion common spatial patterns. The latter two methods highlighted an important gap in the literature—there were no algebraic methods that solved the simultaneous diagonalisation of quaternion matrices. To address this issue, this thesis also presents new fundamental results on quaternion matrix factorisations and explores the depth of quaternion algebra. To demonstrate the efficacy of these methods, real-world problems mainly in biomedical engineering were considered. First, the proposed complex singular spectrum analysis successfully addressed an examination of schizophrenic data through the estimation of the event-related potential of P300. Second, the automated detection of the different stages of sleep was made possible using the proposed quaternion singular spectrum analysis. Third, the proposed quaternion common spatial patterns facilitated the discrimination of Parkinsonian patients from healthy subjects. To illustrate the breadth of the proposed eigen-based techniques, other areas of applications were also presented, such as in wind and financial forecasting, and Alamouti-based communication problems. Finally, a preliminary work is made available to suggest that the next step from this thesis is to move from static models (eigen-based models) to dynamic models (such as tracking models).
Continual Learning Using Bayesian Neural Networks
Continual learning models allow to learn and adapt to new changes and tasks over time. However, in continual and sequential learning scenarios in which the models are trained using different data with various distributions, neural networks tend to forget the previously learned knowledge. This phenomenon is often referred to as catastrophic forgetting. The catastrophic forgetting is an inevitable problem in continual learning models for dynamic environments. To address this issue, we propose a method, called Continual Bayesian Learning Networks (CBLN), which enables the networks to allocate additional resources to adapt to new tasks without forgetting the previously learned tasks. Using a Bayesian Neural Network, CBLN maintains a mixture of Gaussian posterior distributions that are associated with different tasks. The proposed method tries to optimise the number of resources that are needed to learn each task and avoids an exponential increase in the number of resources that are involved in learning multiple tasks. The proposed method does not need to access the past training data and can choose suitable weights to classify the data points during the test time automatically based on an uncertainty criterion. We have evaluated our method on the MNIST and UCR time-series datasets. The evaluation results show that our method can address the catastrophic forgetting problem at a promising rate compared to the state-of-the-art models.